| L(s)  = 1  |     + 3-s     − 2·5-s     − 4·7-s     − 2·9-s         − 7·13-s     − 2·15-s     + 4·17-s     − 6·19-s     − 4·21-s     + 23-s     − 25-s     − 5·27-s     − 5·29-s     − 3·31-s         + 8·35-s     + 2·37-s     − 7·39-s     + 9·41-s     + 8·43-s     + 4·45-s     + 47-s     + 9·49-s     + 4·51-s     − 6·53-s         − 6·57-s     + 8·59-s     + 10·61-s  + ⋯ | 
 
| L(s)  = 1  |     + 0.577·3-s     − 0.894·5-s     − 1.51·7-s     − 2/3·9-s         − 1.94·13-s     − 0.516·15-s     + 0.970·17-s     − 1.37·19-s     − 0.872·21-s     + 0.208·23-s     − 1/5·25-s     − 0.962·27-s     − 0.928·29-s     − 0.538·31-s         + 1.35·35-s     + 0.328·37-s     − 1.12·39-s     + 1.40·41-s     + 1.21·43-s     + 0.596·45-s     + 0.145·47-s     + 9/7·49-s     + 0.560·51-s     − 0.824·53-s         − 0.794·57-s     + 1.04·59-s     + 1.28·61-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 44528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 44528 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(=\) | 
             \(0\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(=\) | 
      
       \(0\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 |  \( 1 \)  |    | 
 | 11 |  \( 1 \)  |    | 
 | 23 |  \( 1 - T \)  |    | 
| good | 3 |  \( 1 - T + p T^{2} \)  |  1.3.ab  | 
 | 5 |  \( 1 + 2 T + p T^{2} \)  |  1.5.c  | 
 | 7 |  \( 1 + 4 T + p T^{2} \)  |  1.7.e  | 
 | 13 |  \( 1 + 7 T + p T^{2} \)  |  1.13.h  | 
 | 17 |  \( 1 - 4 T + p T^{2} \)  |  1.17.ae  | 
 | 19 |  \( 1 + 6 T + p T^{2} \)  |  1.19.g  | 
 | 29 |  \( 1 + 5 T + p T^{2} \)  |  1.29.f  | 
 | 31 |  \( 1 + 3 T + p T^{2} \)  |  1.31.d  | 
 | 37 |  \( 1 - 2 T + p T^{2} \)  |  1.37.ac  | 
 | 41 |  \( 1 - 9 T + p T^{2} \)  |  1.41.aj  | 
 | 43 |  \( 1 - 8 T + p T^{2} \)  |  1.43.ai  | 
 | 47 |  \( 1 - T + p T^{2} \)  |  1.47.ab  | 
 | 53 |  \( 1 + 6 T + p T^{2} \)  |  1.53.g  | 
 | 59 |  \( 1 - 8 T + p T^{2} \)  |  1.59.ai  | 
 | 61 |  \( 1 - 10 T + p T^{2} \)  |  1.61.ak  | 
 | 67 |  \( 1 + 2 T + p T^{2} \)  |  1.67.c  | 
 | 71 |  \( 1 - 13 T + p T^{2} \)  |  1.71.an  | 
 | 73 |  \( 1 - 3 T + p T^{2} \)  |  1.73.ad  | 
 | 79 |  \( 1 - 6 T + p T^{2} \)  |  1.79.ag  | 
 | 83 |  \( 1 + p T^{2} \)  |  1.83.a  | 
 | 89 |  \( 1 + 4 T + p T^{2} \)  |  1.89.e  | 
 | 97 |  \( 1 + 8 T + p T^{2} \)  |  1.97.i  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−14.77303010873679, −14.57964980303043, −14.05367636929852, −13.21566067125431, −12.77718943097416, −12.39738422428329, −12.03388450867082, −11.21564762363361, −10.86111540046859, −9.970377590470358, −9.643962959906735, −9.242919860413263, −8.605951592982335, −7.843818560998189, −7.615562485513774, −7.004165644802579, −6.378737024956694, −5.696074329475715, −5.194853058251125, −4.200554674084508, −3.835142738851802, −3.199535163940220, −2.540196707508551, −2.180699208346766, −0.6143075373678353, 0, 
0.6143075373678353, 2.180699208346766, 2.540196707508551, 3.199535163940220, 3.835142738851802, 4.200554674084508, 5.194853058251125, 5.696074329475715, 6.378737024956694, 7.004165644802579, 7.615562485513774, 7.843818560998189, 8.605951592982335, 9.242919860413263, 9.643962959906735, 9.970377590470358, 10.86111540046859, 11.21564762363361, 12.03388450867082, 12.39738422428329, 12.77718943097416, 13.21566067125431, 14.05367636929852, 14.57964980303043, 14.77303010873679