Properties

Label 2-44528-1.1-c1-0-10
Degree $2$
Conductor $44528$
Sign $-1$
Analytic cond. $355.557$
Root an. cond. $18.8562$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·5-s − 4·7-s − 2·9-s − 7·13-s − 2·15-s + 4·17-s − 6·19-s − 4·21-s + 23-s − 25-s − 5·27-s − 5·29-s − 3·31-s + 8·35-s + 2·37-s − 7·39-s + 9·41-s + 8·43-s + 4·45-s + 47-s + 9·49-s + 4·51-s − 6·53-s − 6·57-s + 8·59-s + 10·61-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.894·5-s − 1.51·7-s − 2/3·9-s − 1.94·13-s − 0.516·15-s + 0.970·17-s − 1.37·19-s − 0.872·21-s + 0.208·23-s − 1/5·25-s − 0.962·27-s − 0.928·29-s − 0.538·31-s + 1.35·35-s + 0.328·37-s − 1.12·39-s + 1.40·41-s + 1.21·43-s + 0.596·45-s + 0.145·47-s + 9/7·49-s + 0.560·51-s − 0.824·53-s − 0.794·57-s + 1.04·59-s + 1.28·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 44528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 44528 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(44528\)    =    \(2^{4} \cdot 11^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(355.557\)
Root analytic conductor: \(18.8562\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 44528,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
11 \( 1 \)
23 \( 1 - T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 + 7 T + p T^{2} \) 1.13.h
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 6 T + p T^{2} \) 1.19.g
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - T + p T^{2} \) 1.47.ab
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 13 T + p T^{2} \) 1.71.an
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.77303010873679, −14.57964980303043, −14.05367636929852, −13.21566067125431, −12.77718943097416, −12.39738422428329, −12.03388450867082, −11.21564762363361, −10.86111540046859, −9.970377590470358, −9.643962959906735, −9.242919860413263, −8.605951592982335, −7.843818560998189, −7.615562485513774, −7.004165644802579, −6.378737024956694, −5.696074329475715, −5.194853058251125, −4.200554674084508, −3.835142738851802, −3.199535163940220, −2.540196707508551, −2.180699208346766, −0.6143075373678353, 0, 0.6143075373678353, 2.180699208346766, 2.540196707508551, 3.199535163940220, 3.835142738851802, 4.200554674084508, 5.194853058251125, 5.696074329475715, 6.378737024956694, 7.004165644802579, 7.615562485513774, 7.843818560998189, 8.605951592982335, 9.242919860413263, 9.643962959906735, 9.970377590470358, 10.86111540046859, 11.21564762363361, 12.03388450867082, 12.39738422428329, 12.77718943097416, 13.21566067125431, 14.05367636929852, 14.57964980303043, 14.77303010873679

Graph of the $Z$-function along the critical line