L(s) = 1 | − 2·7-s − 3·9-s + 11-s + 8·19-s − 8·23-s + 10·29-s − 8·31-s + 10·37-s − 2·41-s − 6·43-s − 8·47-s − 3·49-s − 14·53-s + 4·59-s + 10·61-s + 6·63-s + 4·67-s + 8·73-s − 2·77-s + 4·79-s + 9·81-s + 10·83-s + 6·89-s + 10·97-s − 3·99-s + 14·101-s − 4·103-s + ⋯ |
L(s) = 1 | − 0.755·7-s − 9-s + 0.301·11-s + 1.83·19-s − 1.66·23-s + 1.85·29-s − 1.43·31-s + 1.64·37-s − 0.312·41-s − 0.914·43-s − 1.16·47-s − 3/7·49-s − 1.92·53-s + 0.520·59-s + 1.28·61-s + 0.755·63-s + 0.488·67-s + 0.936·73-s − 0.227·77-s + 0.450·79-s + 81-s + 1.09·83-s + 0.635·89-s + 1.01·97-s − 0.301·99-s + 1.39·101-s − 0.394·103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.385615854\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.385615854\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
---|
bad | 2 | \( 1 \) | |
| 5 | \( 1 \) | |
| 11 | \( 1 - T \) | |
good | 3 | \( 1 + p T^{2} \) | 1.3.a |
| 7 | \( 1 + 2 T + p T^{2} \) | 1.7.c |
| 13 | \( 1 + p T^{2} \) | 1.13.a |
| 17 | \( 1 + p T^{2} \) | 1.17.a |
| 19 | \( 1 - 8 T + p T^{2} \) | 1.19.ai |
| 23 | \( 1 + 8 T + p T^{2} \) | 1.23.i |
| 29 | \( 1 - 10 T + p T^{2} \) | 1.29.ak |
| 31 | \( 1 + 8 T + p T^{2} \) | 1.31.i |
| 37 | \( 1 - 10 T + p T^{2} \) | 1.37.ak |
| 41 | \( 1 + 2 T + p T^{2} \) | 1.41.c |
| 43 | \( 1 + 6 T + p T^{2} \) | 1.43.g |
| 47 | \( 1 + 8 T + p T^{2} \) | 1.47.i |
| 53 | \( 1 + 14 T + p T^{2} \) | 1.53.o |
| 59 | \( 1 - 4 T + p T^{2} \) | 1.59.ae |
| 61 | \( 1 - 10 T + p T^{2} \) | 1.61.ak |
| 67 | \( 1 - 4 T + p T^{2} \) | 1.67.ae |
| 71 | \( 1 + p T^{2} \) | 1.71.a |
| 73 | \( 1 - 8 T + p T^{2} \) | 1.73.ai |
| 79 | \( 1 - 4 T + p T^{2} \) | 1.79.ae |
| 83 | \( 1 - 10 T + p T^{2} \) | 1.83.ak |
| 89 | \( 1 - 6 T + p T^{2} \) | 1.89.ag |
| 97 | \( 1 - 10 T + p T^{2} \) | 1.97.ak |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.189568768165088583687778235853, −7.84655459528857720326508758671, −6.72958731678767743779983022142, −6.23231090588227025870016302520, −5.48097232013195341817671532023, −4.70545041367022764923195026125, −3.52094352256041626153364366784, −3.11734511176616133668069015983, −2.00918208043427186739311111188, −0.64432657916592016921575565241,
0.64432657916592016921575565241, 2.00918208043427186739311111188, 3.11734511176616133668069015983, 3.52094352256041626153364366784, 4.70545041367022764923195026125, 5.48097232013195341817671532023, 6.23231090588227025870016302520, 6.72958731678767743779983022142, 7.84655459528857720326508758671, 8.189568768165088583687778235853