Properties

Label 2-4400-1.1-c1-0-13
Degree $2$
Conductor $4400$
Sign $1$
Analytic cond. $35.1341$
Root an. cond. $5.92740$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s − 3·9-s + 11-s + 8·19-s − 8·23-s + 10·29-s − 8·31-s + 10·37-s − 2·41-s − 6·43-s − 8·47-s − 3·49-s − 14·53-s + 4·59-s + 10·61-s + 6·63-s + 4·67-s + 8·73-s − 2·77-s + 4·79-s + 9·81-s + 10·83-s + 6·89-s + 10·97-s − 3·99-s + 14·101-s − 4·103-s + ⋯
L(s)  = 1  − 0.755·7-s − 9-s + 0.301·11-s + 1.83·19-s − 1.66·23-s + 1.85·29-s − 1.43·31-s + 1.64·37-s − 0.312·41-s − 0.914·43-s − 1.16·47-s − 3/7·49-s − 1.92·53-s + 0.520·59-s + 1.28·61-s + 0.755·63-s + 0.488·67-s + 0.936·73-s − 0.227·77-s + 0.450·79-s + 81-s + 1.09·83-s + 0.635·89-s + 1.01·97-s − 0.301·99-s + 1.39·101-s − 0.394·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4400\)    =    \(2^{4} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(35.1341\)
Root analytic conductor: \(5.92740\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.385615854\)
\(L(\frac12)\) \(\approx\) \(1.385615854\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 10 T + p T^{2} \) 1.83.ak
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.189568768165088583687778235853, −7.84655459528857720326508758671, −6.72958731678767743779983022142, −6.23231090588227025870016302520, −5.48097232013195341817671532023, −4.70545041367022764923195026125, −3.52094352256041626153364366784, −3.11734511176616133668069015983, −2.00918208043427186739311111188, −0.64432657916592016921575565241, 0.64432657916592016921575565241, 2.00918208043427186739311111188, 3.11734511176616133668069015983, 3.52094352256041626153364366784, 4.70545041367022764923195026125, 5.48097232013195341817671532023, 6.23231090588227025870016302520, 6.72958731678767743779983022142, 7.84655459528857720326508758671, 8.189568768165088583687778235853

Graph of the $Z$-function along the critical line