Properties

Label 2-43120-1.1-c1-0-4
Degree $2$
Conductor $43120$
Sign $1$
Analytic cond. $344.314$
Root an. cond. $18.5557$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 3·9-s − 11-s + 6·13-s − 6·17-s − 4·19-s − 4·23-s + 25-s + 6·29-s − 10·37-s − 10·41-s − 4·43-s + 3·45-s + 12·47-s + 6·53-s + 55-s − 4·59-s − 14·61-s − 6·65-s + 8·67-s − 16·71-s + 2·73-s + 9·81-s + 12·83-s + 6·85-s + 6·89-s + 4·95-s + ⋯
L(s)  = 1  − 0.447·5-s − 9-s − 0.301·11-s + 1.66·13-s − 1.45·17-s − 0.917·19-s − 0.834·23-s + 1/5·25-s + 1.11·29-s − 1.64·37-s − 1.56·41-s − 0.609·43-s + 0.447·45-s + 1.75·47-s + 0.824·53-s + 0.134·55-s − 0.520·59-s − 1.79·61-s − 0.744·65-s + 0.977·67-s − 1.89·71-s + 0.234·73-s + 81-s + 1.31·83-s + 0.650·85-s + 0.635·89-s + 0.410·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(43120\)    =    \(2^{4} \cdot 5 \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(344.314\)
Root analytic conductor: \(18.5557\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 43120,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6968993365\)
\(L(\frac12)\) \(\approx\) \(0.6968993365\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
11 \( 1 + T \)
good3 \( 1 + p T^{2} \) 1.3.a
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.90393698659249, −13.90585271172268, −13.64655497235009, −13.45368205474317, −12.48636584634027, −12.08647816775590, −11.59813437994183, −10.94820705467499, −10.63438543039502, −10.24450074801422, −9.155463948014789, −8.700092545385240, −8.497184280229013, −7.976696872905613, −7.107359088555115, −6.480570720916925, −6.183171953114941, −5.464164177669457, −4.789913982528903, −4.105502788326152, −3.614361702284951, −2.904787742496678, −2.192027100460879, −1.436531454924736, −0.2963951810892844, 0.2963951810892844, 1.436531454924736, 2.192027100460879, 2.904787742496678, 3.614361702284951, 4.105502788326152, 4.789913982528903, 5.464164177669457, 6.183171953114941, 6.480570720916925, 7.107359088555115, 7.976696872905613, 8.497184280229013, 8.700092545385240, 9.155463948014789, 10.24450074801422, 10.63438543039502, 10.94820705467499, 11.59813437994183, 12.08647816775590, 12.48636584634027, 13.45368205474317, 13.64655497235009, 13.90585271172268, 14.90393698659249

Graph of the $Z$-function along the critical line