Properties

Label 2-42560-1.1-c1-0-1
Degree $2$
Conductor $42560$
Sign $1$
Analytic cond. $339.843$
Root an. cond. $18.4348$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 7-s − 3·9-s − 4·11-s − 2·13-s − 2·17-s + 19-s + 25-s − 10·29-s − 8·31-s + 35-s + 6·37-s + 10·41-s − 8·43-s − 3·45-s + 49-s − 10·53-s − 4·55-s − 4·59-s − 2·61-s − 3·63-s − 2·65-s + 12·67-s + 4·71-s − 2·73-s − 4·77-s + 12·79-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.377·7-s − 9-s − 1.20·11-s − 0.554·13-s − 0.485·17-s + 0.229·19-s + 1/5·25-s − 1.85·29-s − 1.43·31-s + 0.169·35-s + 0.986·37-s + 1.56·41-s − 1.21·43-s − 0.447·45-s + 1/7·49-s − 1.37·53-s − 0.539·55-s − 0.520·59-s − 0.256·61-s − 0.377·63-s − 0.248·65-s + 1.46·67-s + 0.474·71-s − 0.234·73-s − 0.455·77-s + 1.35·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 42560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 42560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(42560\)    =    \(2^{6} \cdot 5 \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(339.843\)
Root analytic conductor: \(18.4348\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 42560,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7778923485\)
\(L(\frac12)\) \(\approx\) \(0.7778923485\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
7 \( 1 - T \)
19 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.68251533564084, −14.30494897350439, −13.63599799969033, −13.15845633931375, −12.73440257658048, −12.21701260874829, −11.34235362664891, −11.04673623938668, −10.79176897958550, −9.839587042684701, −9.469128717909097, −8.987145582262266, −8.254607013751603, −7.756753641527458, −7.392500888425731, −6.551891403066440, −5.919752576852946, −5.303672734441798, −5.141512588508478, −4.228191023598682, −3.484095327544717, −2.707355230018315, −2.281292613080752, −1.546536828711620, −0.2997505146936820, 0.2997505146936820, 1.546536828711620, 2.281292613080752, 2.707355230018315, 3.484095327544717, 4.228191023598682, 5.141512588508478, 5.303672734441798, 5.919752576852946, 6.551891403066440, 7.392500888425731, 7.756753641527458, 8.254607013751603, 8.987145582262266, 9.469128717909097, 9.839587042684701, 10.79176897958550, 11.04673623938668, 11.34235362664891, 12.21701260874829, 12.73440257658048, 13.15845633931375, 13.63599799969033, 14.30494897350439, 14.68251533564084

Graph of the $Z$-function along the critical line