Properties

Label 2-42483-1.1-c1-0-24
Degree $2$
Conductor $42483$
Sign $-1$
Analytic cond. $339.228$
Root an. cond. $18.4181$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 3-s + 2·4-s + 2·5-s − 2·6-s + 9-s + 4·10-s + 2·11-s − 2·12-s + 13-s − 2·15-s − 4·16-s + 2·18-s + 19-s + 4·20-s + 4·22-s − 25-s + 2·26-s − 27-s − 4·29-s − 4·30-s − 9·31-s − 8·32-s − 2·33-s + 2·36-s − 3·37-s + 2·38-s + ⋯
L(s)  = 1  + 1.41·2-s − 0.577·3-s + 4-s + 0.894·5-s − 0.816·6-s + 1/3·9-s + 1.26·10-s + 0.603·11-s − 0.577·12-s + 0.277·13-s − 0.516·15-s − 16-s + 0.471·18-s + 0.229·19-s + 0.894·20-s + 0.852·22-s − 1/5·25-s + 0.392·26-s − 0.192·27-s − 0.742·29-s − 0.730·30-s − 1.61·31-s − 1.41·32-s − 0.348·33-s + 1/3·36-s − 0.493·37-s + 0.324·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 42483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 42483 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(42483\)    =    \(3 \cdot 7^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(339.228\)
Root analytic conductor: \(18.4181\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 42483,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 + T \)
7 \( 1 \)
17 \( 1 \)
good2 \( 1 - p T + p T^{2} \) 1.2.ac
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - T + p T^{2} \) 1.13.ab
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 9 T + p T^{2} \) 1.31.j
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.90596524176067, −14.25716280006158, −13.97478508810462, −13.33354916790157, −13.05899049541961, −12.43458436313728, −12.04986268469637, −11.48020805784338, −10.89810968854673, −10.56733926887736, −9.663035601116145, −9.192045806660466, −8.926631301402713, −7.736892858822922, −7.318339954369691, −6.518883668584963, −6.124899615210211, −5.703672587482848, −5.206582894036081, −4.622388650742536, −3.849353851605251, −3.563092089552345, −2.582166602995999, −1.967458139789342, −1.228574797926795, 0, 1.228574797926795, 1.967458139789342, 2.582166602995999, 3.563092089552345, 3.849353851605251, 4.622388650742536, 5.206582894036081, 5.703672587482848, 6.124899615210211, 6.518883668584963, 7.318339954369691, 7.736892858822922, 8.926631301402713, 9.192045806660466, 9.663035601116145, 10.56733926887736, 10.89810968854673, 11.48020805784338, 12.04986268469637, 12.43458436313728, 13.05899049541961, 13.33354916790157, 13.97478508810462, 14.25716280006158, 14.90596524176067

Graph of the $Z$-function along the critical line