Properties

Label 2-41400-1.1-c1-0-56
Degree $2$
Conductor $41400$
Sign $1$
Analytic cond. $330.580$
Root an. cond. $18.1818$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·7-s − 2·11-s + 13-s − 8·17-s − 5·19-s + 23-s − 5·31-s − 2·37-s − 7·43-s − 6·47-s + 2·49-s − 6·59-s − 7·61-s + 13·67-s + 16·71-s + 10·73-s + 6·77-s − 8·79-s + 6·83-s − 10·89-s − 3·91-s − 13·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 1.13·7-s − 0.603·11-s + 0.277·13-s − 1.94·17-s − 1.14·19-s + 0.208·23-s − 0.898·31-s − 0.328·37-s − 1.06·43-s − 0.875·47-s + 2/7·49-s − 0.781·59-s − 0.896·61-s + 1.58·67-s + 1.89·71-s + 1.17·73-s + 0.683·77-s − 0.900·79-s + 0.658·83-s − 1.05·89-s − 0.314·91-s − 1.31·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 41400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 41400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(41400\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(330.580\)
Root analytic conductor: \(18.1818\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 41400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
23 \( 1 - T \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + 8 T + p T^{2} \) 1.17.i
19 \( 1 + 5 T + p T^{2} \) 1.19.f
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 13 T + p T^{2} \) 1.97.n
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.40550935121004, −14.92186082803573, −14.12084884084374, −13.56053096119571, −13.16122012112374, −12.73048349844305, −12.40518397414446, −11.49628907948975, −10.92719994845480, −10.73962550359201, −9.971340400373489, −9.416875409677651, −9.009809203935833, −8.342217514414652, −7.945127890013382, −6.948704998957595, −6.600296223649484, −6.331525603945127, −5.377887570209285, −4.915755123183643, −4.062379245656922, −3.672011250224249, −2.779311664394887, −2.309417571934748, −1.486755817171570, 0, 0, 1.486755817171570, 2.309417571934748, 2.779311664394887, 3.672011250224249, 4.062379245656922, 4.915755123183643, 5.377887570209285, 6.331525603945127, 6.600296223649484, 6.948704998957595, 7.945127890013382, 8.342217514414652, 9.009809203935833, 9.416875409677651, 9.971340400373489, 10.73962550359201, 10.92719994845480, 11.49628907948975, 12.40518397414446, 12.73048349844305, 13.16122012112374, 13.56053096119571, 14.12084884084374, 14.92186082803573, 15.40550935121004

Graph of the $Z$-function along the critical line