Properties

Label 2-40656-1.1-c1-0-3
Degree $2$
Conductor $40656$
Sign $1$
Analytic cond. $324.639$
Root an. cond. $18.0177$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·5-s + 7-s + 9-s − 3·13-s + 3·15-s + 4·17-s − 19-s − 21-s − 4·23-s + 4·25-s − 27-s − 3·29-s + 2·31-s − 3·35-s − 3·37-s + 3·39-s − 4·43-s − 3·45-s − 3·47-s + 49-s − 4·51-s − 10·53-s + 57-s − 3·59-s − 2·61-s + 63-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.34·5-s + 0.377·7-s + 1/3·9-s − 0.832·13-s + 0.774·15-s + 0.970·17-s − 0.229·19-s − 0.218·21-s − 0.834·23-s + 4/5·25-s − 0.192·27-s − 0.557·29-s + 0.359·31-s − 0.507·35-s − 0.493·37-s + 0.480·39-s − 0.609·43-s − 0.447·45-s − 0.437·47-s + 1/7·49-s − 0.560·51-s − 1.37·53-s + 0.132·57-s − 0.390·59-s − 0.256·61-s + 0.125·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40656\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(324.639\)
Root analytic conductor: \(18.0177\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 40656,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4671488565\)
\(L(\frac12)\) \(\approx\) \(0.4671488565\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 - T \)
11 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
13 \( 1 + 3 T + p T^{2} \) 1.13.d
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 9 T + p T^{2} \) 1.67.j
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 + 5 T + p T^{2} \) 1.73.f
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.85356485322165, −14.30628801856317, −13.86729413765166, −13.01788382999608, −12.45554216440131, −12.12484638156728, −11.71174627287474, −11.17804026237002, −10.75656071995368, −9.938322086196672, −9.746275101569355, −8.790047798811418, −8.223985909278475, −7.712387376765867, −7.407425395966660, −6.719216937321627, −6.044619138504957, −5.384896889994812, −4.769618326365851, −4.327060136097838, −3.616959201921324, −3.088656793858744, −2.085859839772796, −1.294824724484759, −0.2715930316868101, 0.2715930316868101, 1.294824724484759, 2.085859839772796, 3.088656793858744, 3.616959201921324, 4.327060136097838, 4.769618326365851, 5.384896889994812, 6.044619138504957, 6.719216937321627, 7.407425395966660, 7.712387376765867, 8.223985909278475, 8.790047798811418, 9.746275101569355, 9.938322086196672, 10.75656071995368, 11.17804026237002, 11.71174627287474, 12.12484638156728, 12.45554216440131, 13.01788382999608, 13.86729413765166, 14.30628801856317, 14.85356485322165

Graph of the $Z$-function along the critical line