Properties

Label 40656.f
Number of curves $1$
Conductor $40656$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 40656.f1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1 - T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(13\) \( 1 + 3 T + 13 T^{2}\) 1.13.d
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 40656.f do not have complex multiplication.

Modular form 40656.2.a.f

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 3 q^{5} + q^{7} + q^{9} - 3 q^{13} + 3 q^{15} + 4 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 40656.f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
40656.f1 40656p1 \([0, -1, 0, 10388, -1859141]\) \(5820759945472/73222472421\) \(-1559345772677616\) \([]\) \(161280\) \(1.5961\) \(\Gamma_0(N)\)-optimal