Properties

Label 2-40560-1.1-c1-0-18
Degree $2$
Conductor $40560$
Sign $1$
Analytic cond. $323.873$
Root an. cond. $17.9964$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 2·7-s + 9-s + 15-s + 2·19-s − 2·21-s + 6·23-s + 25-s − 27-s + 8·31-s − 2·35-s − 2·37-s − 6·41-s + 4·43-s − 45-s − 3·49-s − 6·53-s − 2·57-s + 14·61-s + 2·63-s − 4·67-s − 6·69-s + 4·73-s − 75-s + 16·79-s + 81-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 0.755·7-s + 1/3·9-s + 0.258·15-s + 0.458·19-s − 0.436·21-s + 1.25·23-s + 1/5·25-s − 0.192·27-s + 1.43·31-s − 0.338·35-s − 0.328·37-s − 0.937·41-s + 0.609·43-s − 0.149·45-s − 3/7·49-s − 0.824·53-s − 0.264·57-s + 1.79·61-s + 0.251·63-s − 0.488·67-s − 0.722·69-s + 0.468·73-s − 0.115·75-s + 1.80·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40560\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(323.873\)
Root analytic conductor: \(17.9964\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 40560,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.058985790\)
\(L(\frac12)\) \(\approx\) \(2.058985790\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
13 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.95377341727819, −14.14089480648404, −13.87830659257339, −13.07298243428581, −12.69273700285350, −12.03828069203349, −11.54698133039235, −11.27178201088711, −10.66621755314729, −10.12129124291499, −9.559996925598421, −8.831806071297857, −8.356090337809424, −7.778530310007246, −7.237980040925271, −6.661087382091659, −6.118420915472901, −5.245492959251591, −4.945274766689368, −4.391207889672392, −3.591182250988087, −2.969773710823163, −2.094117245068243, −1.240954886467758, −0.6070440577406721, 0.6070440577406721, 1.240954886467758, 2.094117245068243, 2.969773710823163, 3.591182250988087, 4.391207889672392, 4.945274766689368, 5.245492959251591, 6.118420915472901, 6.661087382091659, 7.237980040925271, 7.778530310007246, 8.356090337809424, 8.831806071297857, 9.559996925598421, 10.12129124291499, 10.66621755314729, 11.27178201088711, 11.54698133039235, 12.03828069203349, 12.69273700285350, 13.07298243428581, 13.87830659257339, 14.14089480648404, 14.95377341727819

Graph of the $Z$-function along the critical line