Properties

Label 2-40293-1.1-c1-0-6
Degree $2$
Conductor $40293$
Sign $1$
Analytic cond. $321.741$
Root an. cond. $17.9371$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s − 2·5-s + 4·7-s − 3·8-s − 2·10-s + 6·13-s + 4·14-s − 16-s − 2·17-s + 4·19-s + 2·20-s − 4·23-s − 25-s + 6·26-s − 4·28-s + 2·29-s − 8·31-s + 5·32-s − 2·34-s − 8·35-s + 37-s + 4·38-s + 6·40-s + 6·41-s + 4·43-s − 4·46-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s − 0.894·5-s + 1.51·7-s − 1.06·8-s − 0.632·10-s + 1.66·13-s + 1.06·14-s − 1/4·16-s − 0.485·17-s + 0.917·19-s + 0.447·20-s − 0.834·23-s − 1/5·25-s + 1.17·26-s − 0.755·28-s + 0.371·29-s − 1.43·31-s + 0.883·32-s − 0.342·34-s − 1.35·35-s + 0.164·37-s + 0.648·38-s + 0.948·40-s + 0.937·41-s + 0.609·43-s − 0.589·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40293 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40293 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40293\)    =    \(3^{2} \cdot 11^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(321.741\)
Root analytic conductor: \(17.9371\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 40293,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.692914843\)
\(L(\frac12)\) \(\approx\) \(2.692914843\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
11 \( 1 \)
37 \( 1 - T \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 8 T + p T^{2} \) 1.31.i
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.70281656904550, −14.14480383532033, −13.91970403315205, −13.20442742599889, −12.87221355737574, −12.05460030218104, −11.63639894881842, −11.34946872922500, −10.81017684068014, −10.16697188149306, −9.242685293088166, −8.881108689652097, −8.320990286178735, −7.848076778637128, −7.445731628371335, −6.504589981223897, −5.798803993968421, −5.486732202386083, −4.578846929733445, −4.375797609820970, −3.655548971227552, −3.299217225230795, −2.178534871488251, −1.397988114661482, −0.5723659022503378, 0.5723659022503378, 1.397988114661482, 2.178534871488251, 3.299217225230795, 3.655548971227552, 4.375797609820970, 4.578846929733445, 5.486732202386083, 5.798803993968421, 6.504589981223897, 7.445731628371335, 7.848076778637128, 8.320990286178735, 8.881108689652097, 9.242685293088166, 10.16697188149306, 10.81017684068014, 11.34946872922500, 11.63639894881842, 12.05460030218104, 12.87221355737574, 13.20442742599889, 13.91970403315205, 14.14480383532033, 14.70281656904550

Graph of the $Z$-function along the critical line