Properties

Label 2-3960-1.1-c1-0-23
Degree $2$
Conductor $3960$
Sign $1$
Analytic cond. $31.6207$
Root an. cond. $5.62323$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 4·7-s + 11-s + 2·13-s − 2·17-s − 4·19-s − 4·23-s + 25-s + 10·29-s + 8·31-s + 4·35-s − 2·37-s − 10·41-s + 12·43-s + 12·47-s + 9·49-s + 6·53-s + 55-s − 12·59-s + 10·61-s + 2·65-s + 4·67-s − 12·71-s − 14·73-s + 4·77-s + 12·79-s − 12·83-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.51·7-s + 0.301·11-s + 0.554·13-s − 0.485·17-s − 0.917·19-s − 0.834·23-s + 1/5·25-s + 1.85·29-s + 1.43·31-s + 0.676·35-s − 0.328·37-s − 1.56·41-s + 1.82·43-s + 1.75·47-s + 9/7·49-s + 0.824·53-s + 0.134·55-s − 1.56·59-s + 1.28·61-s + 0.248·65-s + 0.488·67-s − 1.42·71-s − 1.63·73-s + 0.455·77-s + 1.35·79-s − 1.31·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3960\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(31.6207\)
Root analytic conductor: \(5.62323\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3960,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.704225838\)
\(L(\frac12)\) \(\approx\) \(2.704225838\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 - T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.537914348852744772961912993584, −7.900671792632468618228665916844, −6.93494649174396324521926238822, −6.22666893956268362722796062173, −5.50580472450737969546590154201, −4.51476337842813499451331647779, −4.19448566901174269835137325397, −2.75719584620147143651296043441, −1.92949333918943451293769928531, −1.01527971888112351803013832105, 1.01527971888112351803013832105, 1.92949333918943451293769928531, 2.75719584620147143651296043441, 4.19448566901174269835137325397, 4.51476337842813499451331647779, 5.50580472450737969546590154201, 6.22666893956268362722796062173, 6.93494649174396324521926238822, 7.900671792632468618228665916844, 8.537914348852744772961912993584

Graph of the $Z$-function along the critical line