Properties

Label 2-390390-1.1-c1-0-62
Degree $2$
Conductor $390390$
Sign $1$
Analytic cond. $3117.27$
Root an. cond. $55.8326$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 5-s − 6-s − 7-s − 8-s + 9-s − 10-s + 11-s + 12-s + 14-s + 15-s + 16-s + 6·17-s − 18-s + 4·19-s + 20-s − 21-s − 22-s − 24-s + 25-s + 27-s − 28-s + 6·29-s − 30-s − 8·31-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.301·11-s + 0.288·12-s + 0.267·14-s + 0.258·15-s + 1/4·16-s + 1.45·17-s − 0.235·18-s + 0.917·19-s + 0.223·20-s − 0.218·21-s − 0.213·22-s − 0.204·24-s + 1/5·25-s + 0.192·27-s − 0.188·28-s + 1.11·29-s − 0.182·30-s − 1.43·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 390390 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 390390 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(390390\)    =    \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(3117.27\)
Root analytic conductor: \(55.8326\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 390390,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.969454590\)
\(L(\frac12)\) \(\approx\) \(3.969454590\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 + T \)
11 \( 1 - T \)
13 \( 1 \)
good17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.46742345716090, −12.00376519027747, −11.57203968792082, −10.89486445210280, −10.62339806521517, −10.02256192651900, −9.612475955644735, −9.388485314675121, −8.968337765924691, −8.394605348702471, −7.856453186023182, −7.476948747113066, −7.202002076561601, −6.491843908050262, −5.950506159238874, −5.714181599896481, −5.039442205915302, −4.395375554977274, −3.783859030906239, −3.268410353466391, −2.807328930769400, −2.336152532903145, −1.617866254897141, −1.024493813220823, −0.6421024853064671, 0.6421024853064671, 1.024493813220823, 1.617866254897141, 2.336152532903145, 2.807328930769400, 3.268410353466391, 3.783859030906239, 4.395375554977274, 5.039442205915302, 5.714181599896481, 5.950506159238874, 6.491843908050262, 7.202002076561601, 7.476948747113066, 7.856453186023182, 8.394605348702471, 8.968337765924691, 9.388485314675121, 9.612475955644735, 10.02256192651900, 10.62339806521517, 10.89486445210280, 11.57203968792082, 12.00376519027747, 12.46742345716090

Graph of the $Z$-function along the critical line