Properties

Label 2-38720-1.1-c1-0-30
Degree $2$
Conductor $38720$
Sign $1$
Analytic cond. $309.180$
Root an. cond. $17.5835$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 4·7-s − 3·9-s + 4·13-s + 4·17-s + 8·19-s + 4·23-s + 25-s − 8·29-s − 4·31-s − 4·35-s − 6·37-s + 8·41-s + 4·43-s − 3·45-s + 12·47-s + 9·49-s + 10·53-s + 8·61-s + 12·63-s + 4·65-s − 8·67-s + 12·71-s − 12·73-s + 8·79-s + 9·81-s + 4·83-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.51·7-s − 9-s + 1.10·13-s + 0.970·17-s + 1.83·19-s + 0.834·23-s + 1/5·25-s − 1.48·29-s − 0.718·31-s − 0.676·35-s − 0.986·37-s + 1.24·41-s + 0.609·43-s − 0.447·45-s + 1.75·47-s + 9/7·49-s + 1.37·53-s + 1.02·61-s + 1.51·63-s + 0.496·65-s − 0.977·67-s + 1.42·71-s − 1.40·73-s + 0.900·79-s + 81-s + 0.439·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(38720\)    =    \(2^{6} \cdot 5 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(309.180\)
Root analytic conductor: \(17.5835\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 38720,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.183404030\)
\(L(\frac12)\) \(\approx\) \(2.183404030\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
11 \( 1 \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 12 T + p T^{2} \) 1.73.m
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.74216777585839, −14.25375049424727, −13.61087789286781, −13.43287712696765, −12.81013489407557, −12.19768548748939, −11.80621696936566, −10.98903735990171, −10.73381680845478, −9.962589423207637, −9.411832643966701, −9.100865307980296, −8.653801261517688, −7.632801767693591, −7.344671609057963, −6.613845012318733, −5.939560088826103, −5.538374956519488, −5.290681708212092, −3.862485299454781, −3.583403803175522, −2.979104925211208, −2.392604360845817, −1.237124117981091, −0.5979330824998000, 0.5979330824998000, 1.237124117981091, 2.392604360845817, 2.979104925211208, 3.583403803175522, 3.862485299454781, 5.290681708212092, 5.538374956519488, 5.939560088826103, 6.613845012318733, 7.344671609057963, 7.632801767693591, 8.653801261517688, 9.100865307980296, 9.411832643966701, 9.962589423207637, 10.73381680845478, 10.98903735990171, 11.80621696936566, 12.19768548748939, 12.81013489407557, 13.43287712696765, 13.61087789286781, 14.25375049424727, 14.74216777585839

Graph of the $Z$-function along the critical line