Properties

Label 2-38720-1.1-c1-0-76
Degree $2$
Conductor $38720$
Sign $-1$
Analytic cond. $309.180$
Root an. cond. $17.5835$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 4·7-s − 3·9-s + 6·13-s + 6·17-s − 4·19-s − 4·23-s + 25-s − 2·29-s − 8·31-s − 4·35-s + 10·37-s − 10·41-s + 3·45-s − 4·47-s + 9·49-s + 10·53-s − 4·59-s − 2·61-s − 12·63-s − 6·65-s − 8·67-s + 14·73-s − 16·79-s + 9·81-s + 8·83-s − 6·85-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.51·7-s − 9-s + 1.66·13-s + 1.45·17-s − 0.917·19-s − 0.834·23-s + 1/5·25-s − 0.371·29-s − 1.43·31-s − 0.676·35-s + 1.64·37-s − 1.56·41-s + 0.447·45-s − 0.583·47-s + 9/7·49-s + 1.37·53-s − 0.520·59-s − 0.256·61-s − 1.51·63-s − 0.744·65-s − 0.977·67-s + 1.63·73-s − 1.80·79-s + 81-s + 0.878·83-s − 0.650·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(38720\)    =    \(2^{6} \cdot 5 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(309.180\)
Root analytic conductor: \(17.5835\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 38720,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
11 \( 1 \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.93051498855903, −14.60580804351849, −14.20030186721502, −13.54073612261587, −13.15040082718953, −12.25712367920759, −11.90057594085590, −11.37068914618113, −10.92298033584111, −10.65880601083174, −9.807863518605175, −9.059966710476745, −8.504473697847993, −8.111935624140657, −7.868248351004810, −7.060593890993920, −6.235989113530083, −5.693824596575179, −5.335574287452042, −4.505830528326834, −3.854203963884768, −3.434387242830116, −2.513906626077019, −1.673678104618374, −1.140881549077235, 0, 1.140881549077235, 1.673678104618374, 2.513906626077019, 3.434387242830116, 3.854203963884768, 4.505830528326834, 5.335574287452042, 5.693824596575179, 6.235989113530083, 7.060593890993920, 7.868248351004810, 8.111935624140657, 8.504473697847993, 9.059966710476745, 9.807863518605175, 10.65880601083174, 10.92298033584111, 11.37068914618113, 11.90057594085590, 12.25712367920759, 13.15040082718953, 13.54073612261587, 14.20030186721502, 14.60580804351849, 14.93051498855903

Graph of the $Z$-function along the critical line