Properties

Label 2-37920-1.1-c1-0-18
Degree $2$
Conductor $37920$
Sign $1$
Analytic cond. $302.792$
Root an. cond. $17.4009$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 4·7-s + 9-s − 2·13-s − 15-s − 4·17-s − 4·19-s − 4·21-s + 2·23-s + 25-s + 27-s − 10·29-s − 4·31-s + 4·35-s − 8·37-s − 2·39-s − 10·41-s + 12·43-s − 45-s − 8·47-s + 9·49-s − 4·51-s − 4·53-s − 4·57-s − 12·59-s + 6·61-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 1.51·7-s + 1/3·9-s − 0.554·13-s − 0.258·15-s − 0.970·17-s − 0.917·19-s − 0.872·21-s + 0.417·23-s + 1/5·25-s + 0.192·27-s − 1.85·29-s − 0.718·31-s + 0.676·35-s − 1.31·37-s − 0.320·39-s − 1.56·41-s + 1.82·43-s − 0.149·45-s − 1.16·47-s + 9/7·49-s − 0.560·51-s − 0.549·53-s − 0.529·57-s − 1.56·59-s + 0.768·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 37920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 37920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(37920\)    =    \(2^{5} \cdot 3 \cdot 5 \cdot 79\)
Sign: $1$
Analytic conductor: \(302.792\)
Root analytic conductor: \(17.4009\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 37920,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
79 \( 1 + T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.32257297880052, −14.87317232747460, −14.51820300012602, −13.52113284522877, −13.39184250988498, −12.75340256527411, −12.44437672215822, −11.83238725862176, −10.98740003576144, −10.69570721090351, −10.00476212506884, −9.382674745663930, −9.072686790922207, −8.584321305227717, −7.778327662872239, −7.226135579778713, −6.808557396859654, −6.246277250889074, −5.548828636900456, −4.749733165416650, −4.106113016127192, −3.505361319778284, −3.049029139312101, −2.272468934807333, −1.595317819537516, 0, 0, 1.595317819537516, 2.272468934807333, 3.049029139312101, 3.505361319778284, 4.106113016127192, 4.749733165416650, 5.548828636900456, 6.246277250889074, 6.808557396859654, 7.226135579778713, 7.778327662872239, 8.584321305227717, 9.072686790922207, 9.382674745663930, 10.00476212506884, 10.69570721090351, 10.98740003576144, 11.83238725862176, 12.44437672215822, 12.75340256527411, 13.39184250988498, 13.52113284522877, 14.51820300012602, 14.87317232747460, 15.32257297880052

Graph of the $Z$-function along the critical line