Properties

Label 2-379050-1.1-c1-0-160
Degree $2$
Conductor $379050$
Sign $-1$
Analytic cond. $3026.72$
Root an. cond. $55.0157$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 6-s − 7-s − 8-s + 9-s + 6·11-s + 12-s − 4·13-s + 14-s + 16-s − 18-s − 21-s − 6·22-s − 6·23-s − 24-s + 4·26-s + 27-s − 28-s − 6·29-s + 4·31-s − 32-s + 6·33-s + 36-s + 2·37-s − 4·39-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s + 1.80·11-s + 0.288·12-s − 1.10·13-s + 0.267·14-s + 1/4·16-s − 0.235·18-s − 0.218·21-s − 1.27·22-s − 1.25·23-s − 0.204·24-s + 0.784·26-s + 0.192·27-s − 0.188·28-s − 1.11·29-s + 0.718·31-s − 0.176·32-s + 1.04·33-s + 1/6·36-s + 0.328·37-s − 0.640·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 379050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 379050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(379050\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(3026.72\)
Root analytic conductor: \(55.0157\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 379050,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 + T \)
19 \( 1 \)
good11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + p T^{2} \) 1.17.a
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.72740289165912, −11.98050090333375, −11.94923585912594, −11.34682666336136, −10.94867870438336, −10.15994342672403, −9.782054660693847, −9.591133090011101, −9.246311209074871, −8.577591118116986, −8.201992022128070, −7.836097860577141, −7.110512626339412, −6.856873569703132, −6.449748600791100, −5.876979713957488, −5.326249372611103, −4.588782782261376, −4.081475173059456, −3.657767246183656, −3.145397490871961, −2.417827182273511, −2.001594512287872, −1.451820553674899, −0.7567663233185626, 0, 0.7567663233185626, 1.451820553674899, 2.001594512287872, 2.417827182273511, 3.145397490871961, 3.657767246183656, 4.081475173059456, 4.588782782261376, 5.326249372611103, 5.876979713957488, 6.449748600791100, 6.856873569703132, 7.110512626339412, 7.836097860577141, 8.201992022128070, 8.577591118116986, 9.246311209074871, 9.591133090011101, 9.782054660693847, 10.15994342672403, 10.94867870438336, 11.34682666336136, 11.94923585912594, 11.98050090333375, 12.72740289165912

Graph of the $Z$-function along the critical line