Properties

Label 2-377520-1.1-c1-0-88
Degree $2$
Conductor $377520$
Sign $1$
Analytic cond. $3014.51$
Root an. cond. $54.9045$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 4·7-s + 9-s + 13-s + 15-s + 2·17-s + 4·19-s − 4·21-s − 8·23-s + 25-s − 27-s − 2·29-s + 8·31-s − 4·35-s + 2·37-s − 39-s + 6·41-s + 12·43-s − 45-s + 9·49-s − 2·51-s + 10·53-s − 4·57-s + 10·61-s + 4·63-s − 65-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 1.51·7-s + 1/3·9-s + 0.277·13-s + 0.258·15-s + 0.485·17-s + 0.917·19-s − 0.872·21-s − 1.66·23-s + 1/5·25-s − 0.192·27-s − 0.371·29-s + 1.43·31-s − 0.676·35-s + 0.328·37-s − 0.160·39-s + 0.937·41-s + 1.82·43-s − 0.149·45-s + 9/7·49-s − 0.280·51-s + 1.37·53-s − 0.529·57-s + 1.28·61-s + 0.503·63-s − 0.124·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 377520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 377520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(377520\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(3014.51\)
Root analytic conductor: \(54.9045\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 377520,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.161651943\)
\(L(\frac12)\) \(\approx\) \(3.161651943\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
11 \( 1 \)
13 \( 1 - T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.31144746698252, −11.88761128088741, −11.67196505112919, −11.13665552024459, −10.85726849776645, −10.33870952419406, −9.725076373214865, −9.508453059424375, −8.682379194816095, −8.251319726816165, −7.856179576967524, −7.648461392708184, −6.964134870954364, −6.520662864191357, −5.697053464312223, −5.598552853597938, −5.076428090261258, −4.386488871682115, −4.056450249429859, −3.725761327843047, −2.651110755534868, −2.394797596525965, −1.522840278194372, −1.062450711566911, −0.5507145275202251, 0.5507145275202251, 1.062450711566911, 1.522840278194372, 2.394797596525965, 2.651110755534868, 3.725761327843047, 4.056450249429859, 4.386488871682115, 5.076428090261258, 5.598552853597938, 5.697053464312223, 6.520662864191357, 6.964134870954364, 7.648461392708184, 7.856179576967524, 8.251319726816165, 8.682379194816095, 9.508453059424375, 9.725076373214865, 10.33870952419406, 10.85726849776645, 11.13665552024459, 11.67196505112919, 11.88761128088741, 12.31144746698252

Graph of the $Z$-function along the critical line