| L(s)  = 1 | − 7-s             − 13-s         − 7·17-s     − 6·19-s         + 2·23-s             − 4·29-s     − 8·31-s             − 3·37-s         − 6·41-s     − 7·43-s         − 3·47-s     − 6·49-s         − 6·53-s             + 4·59-s     + 10·61-s             + 14·67-s         + 71-s     − 4·73-s             − 16·79-s         + 4·83-s             + 2·89-s     + 91-s             + 4·97-s         + 101-s     + 103-s         + 107-s     + 109-s  + ⋯ | 
| L(s)  = 1 | − 0.377·7-s             − 0.277·13-s         − 1.69·17-s     − 1.37·19-s         + 0.417·23-s             − 0.742·29-s     − 1.43·31-s             − 0.493·37-s         − 0.937·41-s     − 1.06·43-s         − 0.437·47-s     − 6/7·49-s         − 0.824·53-s             + 0.520·59-s     + 1.28·61-s             + 1.71·67-s         + 0.118·71-s     − 0.468·73-s             − 1.80·79-s         + 0.439·83-s             + 0.211·89-s     + 0.104·91-s             + 0.406·97-s         + 0.0995·101-s     + 0.0985·103-s         + 0.0966·107-s     + 0.0957·109-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 374400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 374400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 \) |  | 
|  | 3 | \( 1 \) |  | 
|  | 5 | \( 1 \) |  | 
|  | 13 | \( 1 + T \) |  | 
| good | 7 | \( 1 + T + p T^{2} \) | 1.7.b | 
|  | 11 | \( 1 + p T^{2} \) | 1.11.a | 
|  | 17 | \( 1 + 7 T + p T^{2} \) | 1.17.h | 
|  | 19 | \( 1 + 6 T + p T^{2} \) | 1.19.g | 
|  | 23 | \( 1 - 2 T + p T^{2} \) | 1.23.ac | 
|  | 29 | \( 1 + 4 T + p T^{2} \) | 1.29.e | 
|  | 31 | \( 1 + 8 T + p T^{2} \) | 1.31.i | 
|  | 37 | \( 1 + 3 T + p T^{2} \) | 1.37.d | 
|  | 41 | \( 1 + 6 T + p T^{2} \) | 1.41.g | 
|  | 43 | \( 1 + 7 T + p T^{2} \) | 1.43.h | 
|  | 47 | \( 1 + 3 T + p T^{2} \) | 1.47.d | 
|  | 53 | \( 1 + 6 T + p T^{2} \) | 1.53.g | 
|  | 59 | \( 1 - 4 T + p T^{2} \) | 1.59.ae | 
|  | 61 | \( 1 - 10 T + p T^{2} \) | 1.61.ak | 
|  | 67 | \( 1 - 14 T + p T^{2} \) | 1.67.ao | 
|  | 71 | \( 1 - T + p T^{2} \) | 1.71.ab | 
|  | 73 | \( 1 + 4 T + p T^{2} \) | 1.73.e | 
|  | 79 | \( 1 + 16 T + p T^{2} \) | 1.79.q | 
|  | 83 | \( 1 - 4 T + p T^{2} \) | 1.83.ae | 
|  | 89 | \( 1 - 2 T + p T^{2} \) | 1.89.ac | 
|  | 97 | \( 1 - 4 T + p T^{2} \) | 1.97.ae | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−12.85249732763955, −12.44262422970424, −11.58466843154136, −11.41510126718100, −10.96954576273748, −10.47098140852374, −10.04326194533690, −9.488247820159611, −9.107669189376436, −8.533022657748527, −8.384322951870735, −7.660244443940034, −7.023319339578818, −6.698791975126680, −6.465723013676080, −5.706107890943358, −5.228015378176252, −4.737696516982941, −4.219083712140421, −3.698904364311261, −3.223609070120809, −2.529276068666263, −1.868013493137821, −1.746972614648907, −0.4925998876487965, 0, 
0.4925998876487965, 1.746972614648907, 1.868013493137821, 2.529276068666263, 3.223609070120809, 3.698904364311261, 4.219083712140421, 4.737696516982941, 5.228015378176252, 5.706107890943358, 6.465723013676080, 6.698791975126680, 7.023319339578818, 7.660244443940034, 8.384322951870735, 8.533022657748527, 9.107669189376436, 9.488247820159611, 10.04326194533690, 10.47098140852374, 10.96954576273748, 11.41510126718100, 11.58466843154136, 12.44262422970424, 12.85249732763955
