Properties

Label 2-374400-1.1-c1-0-88
Degree $2$
Conductor $374400$
Sign $-1$
Analytic cond. $2989.59$
Root an. cond. $54.6772$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s − 13-s − 7·17-s − 6·19-s + 2·23-s − 4·29-s − 8·31-s − 3·37-s − 6·41-s − 7·43-s − 3·47-s − 6·49-s − 6·53-s + 4·59-s + 10·61-s + 14·67-s + 71-s − 4·73-s − 16·79-s + 4·83-s + 2·89-s + 91-s + 4·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  − 0.377·7-s − 0.277·13-s − 1.69·17-s − 1.37·19-s + 0.417·23-s − 0.742·29-s − 1.43·31-s − 0.493·37-s − 0.937·41-s − 1.06·43-s − 0.437·47-s − 6/7·49-s − 0.824·53-s + 0.520·59-s + 1.28·61-s + 1.71·67-s + 0.118·71-s − 0.468·73-s − 1.80·79-s + 0.439·83-s + 0.211·89-s + 0.104·91-s + 0.406·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 374400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 374400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(374400\)    =    \(2^{7} \cdot 3^{2} \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(2989.59\)
Root analytic conductor: \(54.6772\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 374400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 + T \)
good7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.85249732763955, −12.44262422970424, −11.58466843154136, −11.41510126718100, −10.96954576273748, −10.47098140852374, −10.04326194533690, −9.488247820159611, −9.107669189376436, −8.533022657748527, −8.384322951870735, −7.660244443940034, −7.023319339578818, −6.698791975126680, −6.465723013676080, −5.706107890943358, −5.228015378176252, −4.737696516982941, −4.219083712140421, −3.698904364311261, −3.223609070120809, −2.529276068666263, −1.868013493137821, −1.746972614648907, −0.4925998876487965, 0, 0.4925998876487965, 1.746972614648907, 1.868013493137821, 2.529276068666263, 3.223609070120809, 3.698904364311261, 4.219083712140421, 4.737696516982941, 5.228015378176252, 5.706107890943358, 6.465723013676080, 6.698791975126680, 7.023319339578818, 7.660244443940034, 8.384322951870735, 8.533022657748527, 9.107669189376436, 9.488247820159611, 10.04326194533690, 10.47098140852374, 10.96954576273748, 11.41510126718100, 11.58466843154136, 12.44262422970424, 12.85249732763955

Graph of the $Z$-function along the critical line