Properties

Label 2-37440-1.1-c1-0-14
Degree $2$
Conductor $37440$
Sign $1$
Analytic cond. $298.959$
Root an. cond. $17.2904$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 4·7-s − 13-s − 6·17-s + 4·19-s + 6·23-s + 25-s + 6·29-s − 10·31-s − 4·35-s + 10·37-s − 6·41-s + 4·43-s + 12·47-s + 9·49-s − 12·53-s + 12·59-s + 10·61-s − 65-s − 14·67-s − 16·73-s + 8·79-s − 12·83-s − 6·85-s + 6·89-s + 4·91-s + 4·95-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.51·7-s − 0.277·13-s − 1.45·17-s + 0.917·19-s + 1.25·23-s + 1/5·25-s + 1.11·29-s − 1.79·31-s − 0.676·35-s + 1.64·37-s − 0.937·41-s + 0.609·43-s + 1.75·47-s + 9/7·49-s − 1.64·53-s + 1.56·59-s + 1.28·61-s − 0.124·65-s − 1.71·67-s − 1.87·73-s + 0.900·79-s − 1.31·83-s − 0.650·85-s + 0.635·89-s + 0.419·91-s + 0.410·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 37440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 37440 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(37440\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(298.959\)
Root analytic conductor: \(17.2904\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 37440,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.470558285\)
\(L(\frac12)\) \(\approx\) \(1.470558285\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
13 \( 1 + T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 16 T + p T^{2} \) 1.73.q
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.73162914278970, −14.47071440343230, −13.58580057228065, −13.26163964207670, −12.92378403067985, −12.41370219328380, −11.70713524771734, −11.15615412670010, −10.58557017940589, −10.04228801479187, −9.508766566365829, −9.011142737201124, −8.779064386807625, −7.707211699594507, −7.132818071379838, −6.740873308830465, −6.155502280184557, −5.599608142189016, −4.929530338667327, −4.224442589119622, −3.532063068531879, −2.785706395219764, −2.469848702379827, −1.360254728965712, −0.4572687679455967, 0.4572687679455967, 1.360254728965712, 2.469848702379827, 2.785706395219764, 3.532063068531879, 4.224442589119622, 4.929530338667327, 5.599608142189016, 6.155502280184557, 6.740873308830465, 7.132818071379838, 7.707211699594507, 8.779064386807625, 9.011142737201124, 9.508766566365829, 10.04228801479187, 10.58557017940589, 11.15615412670010, 11.70713524771734, 12.41370219328380, 12.92378403067985, 13.26163964207670, 13.58580057228065, 14.47071440343230, 14.73162914278970

Graph of the $Z$-function along the critical line