Properties

Label 2-371280-1.1-c1-0-119
Degree $2$
Conductor $371280$
Sign $-1$
Analytic cond. $2964.68$
Root an. cond. $54.4489$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 7-s + 9-s + 4·11-s + 13-s + 15-s − 17-s − 2·19-s + 21-s − 6·23-s + 25-s − 27-s − 2·29-s + 8·31-s − 4·33-s + 35-s + 8·37-s − 39-s + 6·41-s + 6·43-s − 45-s + 8·47-s + 49-s + 51-s + 4·53-s − 4·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 0.377·7-s + 1/3·9-s + 1.20·11-s + 0.277·13-s + 0.258·15-s − 0.242·17-s − 0.458·19-s + 0.218·21-s − 1.25·23-s + 1/5·25-s − 0.192·27-s − 0.371·29-s + 1.43·31-s − 0.696·33-s + 0.169·35-s + 1.31·37-s − 0.160·39-s + 0.937·41-s + 0.914·43-s − 0.149·45-s + 1.16·47-s + 1/7·49-s + 0.140·51-s + 0.549·53-s − 0.539·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 371280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 371280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(371280\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17\)
Sign: $-1$
Analytic conductor: \(2964.68\)
Root analytic conductor: \(54.4489\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 371280,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 + T \)
13 \( 1 - T \)
17 \( 1 + T \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.58678365835376, −12.13222913885180, −11.89992219036093, −11.42398026309440, −10.94875157959684, −10.59654355197172, −9.964311062924416, −9.588166171945738, −9.189889831837098, −8.559874827046695, −8.240916244403573, −7.588280720880746, −7.201249834018110, −6.596474062681151, −6.250331610413005, −5.870859253519056, −5.396867599153288, −4.422105682760145, −4.291812515263444, −3.923512973017294, −3.257016767897192, −2.505777233974547, −2.091510022407075, −1.130919435367105, −0.8295409572238028, 0, 0.8295409572238028, 1.130919435367105, 2.091510022407075, 2.505777233974547, 3.257016767897192, 3.923512973017294, 4.291812515263444, 4.422105682760145, 5.396867599153288, 5.870859253519056, 6.250331610413005, 6.596474062681151, 7.201249834018110, 7.588280720880746, 8.240916244403573, 8.559874827046695, 9.189889831837098, 9.588166171945738, 9.964311062924416, 10.59654355197172, 10.94875157959684, 11.42398026309440, 11.89992219036093, 12.13222913885180, 12.58678365835376

Graph of the $Z$-function along the critical line