Properties

Label 2-364815-1.1-c1-0-6
Degree $2$
Conductor $364815$
Sign $-1$
Analytic cond. $2913.06$
Root an. cond. $53.9727$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s − 5-s − 3·8-s − 10-s − 4·13-s − 16-s − 4·17-s − 4·19-s + 20-s − 8·23-s + 25-s − 4·26-s − 2·29-s + 2·31-s + 5·32-s − 4·34-s + 6·37-s − 4·38-s + 3·40-s + 6·41-s − 8·46-s − 12·47-s − 7·49-s + 50-s + 4·52-s + 2·53-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s − 0.447·5-s − 1.06·8-s − 0.316·10-s − 1.10·13-s − 1/4·16-s − 0.970·17-s − 0.917·19-s + 0.223·20-s − 1.66·23-s + 1/5·25-s − 0.784·26-s − 0.371·29-s + 0.359·31-s + 0.883·32-s − 0.685·34-s + 0.986·37-s − 0.648·38-s + 0.474·40-s + 0.937·41-s − 1.17·46-s − 1.75·47-s − 49-s + 0.141·50-s + 0.554·52-s + 0.274·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 364815 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 364815 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(364815\)    =    \(3^{2} \cdot 5 \cdot 11^{2} \cdot 67\)
Sign: $-1$
Analytic conductor: \(2913.06\)
Root analytic conductor: \(53.9727\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 364815,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 + T \)
11 \( 1 \)
67 \( 1 + T \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 14 T + p T^{2} \) 1.61.o
71 \( 1 + 14 T + p T^{2} \) 1.71.o
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.84197402104237, −12.33706602796713, −11.88053907062726, −11.60192709794656, −11.03852085870482, −10.48899874410066, −9.959477330799626, −9.581910346654228, −9.154195794370586, −8.569765410582406, −8.194826835939965, −7.719377547877275, −7.257183676923274, −6.519937357337876, −6.192900335093404, −5.804140827237406, −5.063133433038671, −4.511974293496846, −4.459223325570348, −3.853516144216316, −3.273510860353006, −2.660731144303180, −2.208686258119073, −1.534412114434025, −0.4497203373100922, 0, 0.4497203373100922, 1.534412114434025, 2.208686258119073, 2.660731144303180, 3.273510860353006, 3.853516144216316, 4.459223325570348, 4.511974293496846, 5.063133433038671, 5.804140827237406, 6.192900335093404, 6.519937357337876, 7.257183676923274, 7.719377547877275, 8.194826835939965, 8.569765410582406, 9.154195794370586, 9.581910346654228, 9.959477330799626, 10.48899874410066, 11.03852085870482, 11.60192709794656, 11.88053907062726, 12.33706602796713, 12.84197402104237

Graph of the $Z$-function along the critical line