Properties

Label 2-364140-1.1-c1-0-57
Degree $2$
Conductor $364140$
Sign $-1$
Analytic cond. $2907.67$
Root an. cond. $53.9228$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 7-s + 6·11-s − 4·13-s + 2·19-s + 25-s + 6·29-s + 10·31-s + 35-s − 2·37-s − 6·41-s − 4·43-s + 49-s + 12·53-s − 6·55-s − 14·61-s + 4·65-s − 4·67-s + 6·71-s + 4·73-s − 6·77-s + 16·79-s + 12·83-s − 6·89-s + 4·91-s − 2·95-s + 16·97-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.377·7-s + 1.80·11-s − 1.10·13-s + 0.458·19-s + 1/5·25-s + 1.11·29-s + 1.79·31-s + 0.169·35-s − 0.328·37-s − 0.937·41-s − 0.609·43-s + 1/7·49-s + 1.64·53-s − 0.809·55-s − 1.79·61-s + 0.496·65-s − 0.488·67-s + 0.712·71-s + 0.468·73-s − 0.683·77-s + 1.80·79-s + 1.31·83-s − 0.635·89-s + 0.419·91-s − 0.205·95-s + 1.62·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 364140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 364140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(364140\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(2907.67\)
Root analytic conductor: \(53.9228\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 364140,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 + T \)
17 \( 1 \)
good11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 + 4 T + p T^{2} \) 1.13.e
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.34082599485676, −12.24542107831570, −11.91477825574256, −11.66116584079267, −10.91251285837669, −10.44679381277804, −9.965318820777505, −9.545772019619672, −9.209663408547628, −8.594744885496540, −8.254743598976432, −7.687971148652362, −7.081031759928277, −6.762570911083295, −6.383310342823356, −5.894648793617450, −5.067022866714917, −4.738687047693320, −4.278307817710365, −3.615628682538095, −3.302254394186377, −2.624565140771285, −2.083230463500185, −1.225641137075653, −0.8577754763724076, 0, 0.8577754763724076, 1.225641137075653, 2.083230463500185, 2.624565140771285, 3.302254394186377, 3.615628682538095, 4.278307817710365, 4.738687047693320, 5.067022866714917, 5.894648793617450, 6.383310342823356, 6.762570911083295, 7.081031759928277, 7.687971148652362, 8.254743598976432, 8.594744885496540, 9.209663408547628, 9.545772019619672, 9.965318820777505, 10.44679381277804, 10.91251285837669, 11.66116584079267, 11.91477825574256, 12.24542107831570, 12.34082599485676

Graph of the $Z$-function along the critical line