Properties

Label 2-360640-1.1-c1-0-110
Degree $2$
Conductor $360640$
Sign $-1$
Analytic cond. $2879.72$
Root an. cond. $53.6630$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 3·9-s − 2·11-s + 4·13-s + 6·17-s − 8·19-s + 23-s + 25-s − 10·29-s − 10·31-s − 8·37-s + 2·41-s + 3·45-s − 12·47-s + 4·53-s + 2·55-s + 14·59-s − 2·61-s − 4·65-s + 4·67-s + 8·71-s + 6·79-s + 9·81-s − 12·83-s − 6·85-s − 10·89-s + 8·95-s + ⋯
L(s)  = 1  − 0.447·5-s − 9-s − 0.603·11-s + 1.10·13-s + 1.45·17-s − 1.83·19-s + 0.208·23-s + 1/5·25-s − 1.85·29-s − 1.79·31-s − 1.31·37-s + 0.312·41-s + 0.447·45-s − 1.75·47-s + 0.549·53-s + 0.269·55-s + 1.82·59-s − 0.256·61-s − 0.496·65-s + 0.488·67-s + 0.949·71-s + 0.675·79-s + 81-s − 1.31·83-s − 0.650·85-s − 1.05·89-s + 0.820·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 360640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 360640 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(360640\)    =    \(2^{6} \cdot 5 \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(2879.72\)
Root analytic conductor: \(53.6630\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 360640,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
23 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 8 T + p T^{2} \) 1.19.i
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.74026124677772, −12.50159582611397, −11.66299837136868, −11.32323970513519, −11.02929906635061, −10.64189999627554, −10.05094083865233, −9.638404982909467, −8.810461729517060, −8.693139438962015, −8.307226658778917, −7.676903200601633, −7.362770810915505, −6.742620455849524, −6.136360249181253, −5.773013802398839, −5.264775897080149, −4.963202354187655, −3.974431143846363, −3.625564163452590, −3.421070805890217, −2.598427342178778, −1.995815015922018, −1.519879341240405, −0.5606867502461132, 0, 0.5606867502461132, 1.519879341240405, 1.995815015922018, 2.598427342178778, 3.421070805890217, 3.625564163452590, 3.974431143846363, 4.963202354187655, 5.264775897080149, 5.773013802398839, 6.136360249181253, 6.742620455849524, 7.362770810915505, 7.676903200601633, 8.307226658778917, 8.693139438962015, 8.810461729517060, 9.638404982909467, 10.05094083865233, 10.64189999627554, 11.02929906635061, 11.32323970513519, 11.66299837136868, 12.50159582611397, 12.74026124677772

Graph of the $Z$-function along the critical line