Properties

Label 2-356928-1.1-c1-0-146
Degree $2$
Conductor $356928$
Sign $-1$
Analytic cond. $2850.08$
Root an. cond. $53.3861$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·5-s − 4·7-s + 9-s − 11-s − 2·15-s + 2·17-s + 4·19-s + 4·21-s − 25-s − 27-s + 6·29-s − 4·31-s + 33-s − 8·35-s − 2·37-s + 6·41-s + 4·43-s + 2·45-s + 8·47-s + 9·49-s − 2·51-s + 6·53-s − 2·55-s − 4·57-s + 12·59-s + 10·61-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.894·5-s − 1.51·7-s + 1/3·9-s − 0.301·11-s − 0.516·15-s + 0.485·17-s + 0.917·19-s + 0.872·21-s − 1/5·25-s − 0.192·27-s + 1.11·29-s − 0.718·31-s + 0.174·33-s − 1.35·35-s − 0.328·37-s + 0.937·41-s + 0.609·43-s + 0.298·45-s + 1.16·47-s + 9/7·49-s − 0.280·51-s + 0.824·53-s − 0.269·55-s − 0.529·57-s + 1.56·59-s + 1.28·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 356928 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 356928 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(356928\)    =    \(2^{6} \cdot 3 \cdot 11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(2850.08\)
Root analytic conductor: \(53.3861\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 356928,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 + T \)
13 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + 4 T + p T^{2} \) 1.7.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.72770037205352, −12.35854326181597, −11.95139997918684, −11.46829926779363, −10.76718550805488, −10.47260179370457, −9.953336740713929, −9.690373595211355, −9.334318359688358, −8.784453576083061, −8.228544190132745, −7.453635277963733, −7.226758466698748, −6.610645181745117, −6.249290670318226, −5.738301493607519, −5.404589130818978, −5.031840809697659, −4.047984978815671, −3.818789671118311, −3.120464948632175, −2.531211445034740, −2.212729456280405, −1.181137581038600, −0.8121800273849353, 0, 0.8121800273849353, 1.181137581038600, 2.212729456280405, 2.531211445034740, 3.120464948632175, 3.818789671118311, 4.047984978815671, 5.031840809697659, 5.404589130818978, 5.738301493607519, 6.249290670318226, 6.610645181745117, 7.226758466698748, 7.453635277963733, 8.228544190132745, 8.784453576083061, 9.334318359688358, 9.690373595211355, 9.953336740713929, 10.47260179370457, 10.76718550805488, 11.46829926779363, 11.95139997918684, 12.35854326181597, 12.72770037205352

Graph of the $Z$-function along the critical line