Properties

Label 2-35550-1.1-c1-0-20
Degree $2$
Conductor $35550$
Sign $-1$
Analytic cond. $283.868$
Root an. cond. $16.8483$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 7-s − 8-s − 3·11-s + 13-s − 14-s + 16-s − 3·17-s − 4·19-s + 3·22-s + 3·23-s − 26-s + 28-s + 9·29-s − 10·31-s − 32-s + 3·34-s − 2·37-s + 4·38-s − 6·41-s + 43-s − 3·44-s − 3·46-s + 6·47-s − 6·49-s + 52-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.377·7-s − 0.353·8-s − 0.904·11-s + 0.277·13-s − 0.267·14-s + 1/4·16-s − 0.727·17-s − 0.917·19-s + 0.639·22-s + 0.625·23-s − 0.196·26-s + 0.188·28-s + 1.67·29-s − 1.79·31-s − 0.176·32-s + 0.514·34-s − 0.328·37-s + 0.648·38-s − 0.937·41-s + 0.152·43-s − 0.452·44-s − 0.442·46-s + 0.875·47-s − 6/7·49-s + 0.138·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35550\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 79\)
Sign: $-1$
Analytic conductor: \(283.868\)
Root analytic conductor: \(16.8483\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 35550,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
79 \( 1 - T \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 + 5 T + p T^{2} \) 1.97.f
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.31786915638917, −14.76394757549736, −14.25600622233782, −13.51134909542831, −13.10585574510195, −12.54870201155107, −11.97660067735205, −11.33846781411943, −10.80069343968846, −10.51098310839464, −9.983307856025706, −9.111072050918515, −8.783004488098544, −8.284085469895136, −7.702887139650387, −7.093788839399170, −6.573678492697037, −5.956865867357597, −5.168105334407402, −4.748532454635001, −3.885651128099238, −3.164696366117245, −2.354533847891303, −1.890570279343471, −0.8937035532183153, 0, 0.8937035532183153, 1.890570279343471, 2.354533847891303, 3.164696366117245, 3.885651128099238, 4.748532454635001, 5.168105334407402, 5.956865867357597, 6.573678492697037, 7.093788839399170, 7.702887139650387, 8.284085469895136, 8.783004488098544, 9.111072050918515, 9.983307856025706, 10.51098310839464, 10.80069343968846, 11.33846781411943, 11.97660067735205, 12.54870201155107, 13.10585574510195, 13.51134909542831, 14.25600622233782, 14.76394757549736, 15.31786915638917

Graph of the $Z$-function along the critical line