Properties

Label 2-350350-1.1-c1-0-89
Degree $2$
Conductor $350350$
Sign $-1$
Analytic cond. $2797.55$
Root an. cond. $52.8919$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s + 4-s + 2·6-s − 8-s + 9-s − 11-s − 2·12-s + 13-s + 16-s − 3·17-s − 18-s + 4·19-s + 22-s + 6·23-s + 2·24-s − 26-s + 4·27-s − 3·29-s + 4·31-s − 32-s + 2·33-s + 3·34-s + 36-s + 10·37-s − 4·38-s − 2·39-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.15·3-s + 1/2·4-s + 0.816·6-s − 0.353·8-s + 1/3·9-s − 0.301·11-s − 0.577·12-s + 0.277·13-s + 1/4·16-s − 0.727·17-s − 0.235·18-s + 0.917·19-s + 0.213·22-s + 1.25·23-s + 0.408·24-s − 0.196·26-s + 0.769·27-s − 0.557·29-s + 0.718·31-s − 0.176·32-s + 0.348·33-s + 0.514·34-s + 1/6·36-s + 1.64·37-s − 0.648·38-s − 0.320·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 350350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(350350\)    =    \(2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13\)
Sign: $-1$
Analytic conductor: \(2797.55\)
Root analytic conductor: \(52.8919\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 350350,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
13 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.70744213117690, −12.08459891412945, −11.79030444948489, −11.26030832362585, −10.97141252354229, −10.73421418412270, −10.01409980894958, −9.701112247421666, −9.132626228692281, −8.761972427933200, −8.185673947725405, −7.671106598041933, −7.264449104576181, −6.704437604802370, −6.231721741976560, −5.971084595772814, −5.299696178226021, −4.849599946577289, −4.505024880937507, −3.656263506859593, −2.978562478726560, −2.692473994795118, −1.782828275569501, −1.211365524250837, −0.6544399120035253, 0, 0.6544399120035253, 1.211365524250837, 1.782828275569501, 2.692473994795118, 2.978562478726560, 3.656263506859593, 4.505024880937507, 4.849599946577289, 5.299696178226021, 5.971084595772814, 6.231721741976560, 6.704437604802370, 7.264449104576181, 7.671106598041933, 8.185673947725405, 8.761972427933200, 9.132626228692281, 9.701112247421666, 10.01409980894958, 10.73421418412270, 10.97141252354229, 11.26030832362585, 11.79030444948489, 12.08459891412945, 12.70744213117690

Graph of the $Z$-function along the critical line