Properties

Label 2-348726-1.1-c1-0-54
Degree $2$
Conductor $348726$
Sign $-1$
Analytic cond. $2784.59$
Root an. cond. $52.7692$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s + 7-s + 8-s + 9-s + 6·11-s − 12-s − 2·13-s + 14-s + 16-s − 6·17-s + 18-s − 21-s + 6·22-s + 23-s − 24-s − 5·25-s − 2·26-s − 27-s + 28-s + 6·29-s − 8·31-s + 32-s − 6·33-s − 6·34-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s + 1.80·11-s − 0.288·12-s − 0.554·13-s + 0.267·14-s + 1/4·16-s − 1.45·17-s + 0.235·18-s − 0.218·21-s + 1.27·22-s + 0.208·23-s − 0.204·24-s − 25-s − 0.392·26-s − 0.192·27-s + 0.188·28-s + 1.11·29-s − 1.43·31-s + 0.176·32-s − 1.04·33-s − 1.02·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 348726 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 348726 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(348726\)    =    \(2 \cdot 3 \cdot 7 \cdot 19^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(2784.59\)
Root analytic conductor: \(52.7692\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 348726,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
7 \( 1 - T \)
19 \( 1 \)
23 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.71620849798359, −12.17573466763581, −11.96625810533349, −11.38249476929670, −11.27384857229584, −10.65672036180699, −10.11541571256490, −9.714975934515406, −9.024371603455341, −8.784125263382987, −8.236072191700119, −7.470916299946809, −7.030421220529667, −6.669301290213011, −6.390063063916570, −5.680807674742855, −5.250198448125307, −4.776267402879175, −4.268897060457913, −3.734734455007229, −3.554678328946221, −2.443003064121195, −2.088392180450595, −1.519549511606236, −0.8452288909584823, 0, 0.8452288909584823, 1.519549511606236, 2.088392180450595, 2.443003064121195, 3.554678328946221, 3.734734455007229, 4.268897060457913, 4.776267402879175, 5.250198448125307, 5.680807674742855, 6.390063063916570, 6.669301290213011, 7.030421220529667, 7.470916299946809, 8.236072191700119, 8.784125263382987, 9.024371603455341, 9.714975934515406, 10.11541571256490, 10.65672036180699, 11.27384857229584, 11.38249476929670, 11.96625810533349, 12.17573466763581, 12.71620849798359

Graph of the $Z$-function along the critical line