Properties

Label 2-348480-1.1-c1-0-300
Degree $2$
Conductor $348480$
Sign $-1$
Analytic cond. $2782.62$
Root an. cond. $52.7506$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 7-s − 3·13-s + 17-s + 5·19-s − 4·23-s + 25-s − 9·29-s + 6·31-s − 35-s + 11·37-s + 2·41-s − 2·43-s + 6·47-s − 6·49-s + 4·53-s + 4·59-s − 4·61-s + 3·65-s + 6·67-s − 5·71-s + 6·73-s − 14·79-s + 7·83-s − 85-s − 4·89-s − 3·91-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.377·7-s − 0.832·13-s + 0.242·17-s + 1.14·19-s − 0.834·23-s + 1/5·25-s − 1.67·29-s + 1.07·31-s − 0.169·35-s + 1.80·37-s + 0.312·41-s − 0.304·43-s + 0.875·47-s − 6/7·49-s + 0.549·53-s + 0.520·59-s − 0.512·61-s + 0.372·65-s + 0.733·67-s − 0.593·71-s + 0.702·73-s − 1.57·79-s + 0.768·83-s − 0.108·85-s − 0.423·89-s − 0.314·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 348480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 348480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(348480\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(2782.62\)
Root analytic conductor: \(52.7506\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 348480,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
13 \( 1 + 3 T + p T^{2} \) 1.13.d
17 \( 1 - T + p T^{2} \) 1.17.ab
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 11 T + p T^{2} \) 1.37.al
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 - 7 T + p T^{2} \) 1.83.ah
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.69076209001392, −12.29056501441372, −11.73791939884906, −11.58002314227815, −11.03355299515246, −10.59974332677945, −9.834811366290884, −9.690845186666791, −9.316454891529427, −8.493773731549141, −8.198385823470341, −7.628717247608146, −7.397031049063603, −6.921918190585672, −6.155934481122476, −5.790172621662782, −5.239484151842946, −4.790203523247476, −4.168248643392912, −3.867569639551033, −3.110177460407463, −2.652036728202105, −2.080051261935058, −1.361988091840553, −0.7562517609063039, 0, 0.7562517609063039, 1.361988091840553, 2.080051261935058, 2.652036728202105, 3.110177460407463, 3.867569639551033, 4.168248643392912, 4.790203523247476, 5.239484151842946, 5.790172621662782, 6.155934481122476, 6.921918190585672, 7.397031049063603, 7.628717247608146, 8.198385823470341, 8.493773731549141, 9.316454891529427, 9.690845186666791, 9.834811366290884, 10.59974332677945, 11.03355299515246, 11.58002314227815, 11.73791939884906, 12.29056501441372, 12.69076209001392

Graph of the $Z$-function along the critical line