Properties

Label 2-338800-1.1-c1-0-41
Degree $2$
Conductor $338800$
Sign $1$
Analytic cond. $2705.33$
Root an. cond. $52.0128$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 7-s + 9-s − 6·13-s + 6·17-s + 4·19-s + 2·21-s + 4·27-s − 4·29-s + 2·31-s + 6·37-s + 12·39-s + 2·41-s − 4·43-s + 10·47-s + 49-s − 12·51-s + 6·53-s − 8·57-s − 6·59-s − 14·61-s − 63-s − 12·67-s + 8·71-s + 10·73-s − 12·79-s − 11·81-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.377·7-s + 1/3·9-s − 1.66·13-s + 1.45·17-s + 0.917·19-s + 0.436·21-s + 0.769·27-s − 0.742·29-s + 0.359·31-s + 0.986·37-s + 1.92·39-s + 0.312·41-s − 0.609·43-s + 1.45·47-s + 1/7·49-s − 1.68·51-s + 0.824·53-s − 1.05·57-s − 0.781·59-s − 1.79·61-s − 0.125·63-s − 1.46·67-s + 0.949·71-s + 1.17·73-s − 1.35·79-s − 1.22·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 338800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(338800\)    =    \(2^{4} \cdot 5^{2} \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(2705.33\)
Root analytic conductor: \(52.0128\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 338800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.110143363\)
\(L(\frac12)\) \(\approx\) \(1.110143363\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
11 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.41646007092435, −12.03051911869218, −11.84481222830548, −11.32457463859285, −10.71429101067060, −10.33679932953817, −9.948035642363723, −9.427107705135812, −9.194078005932537, −8.401046897944621, −7.692309275423574, −7.489228369970641, −7.116014309890423, −6.347990129319844, −6.019342205149238, −5.488897469514479, −5.181791726281998, −4.678054714414363, −4.136925940993377, −3.390916256507443, −2.900152650188250, −2.439516554087100, −1.570630588753503, −0.8962314698354741, −0.3729434767070306, 0.3729434767070306, 0.8962314698354741, 1.570630588753503, 2.439516554087100, 2.900152650188250, 3.390916256507443, 4.136925940993377, 4.678054714414363, 5.181791726281998, 5.488897469514479, 6.019342205149238, 6.347990129319844, 7.116014309890423, 7.489228369970641, 7.692309275423574, 8.401046897944621, 9.194078005932537, 9.427107705135812, 9.948035642363723, 10.33679932953817, 10.71429101067060, 11.32457463859285, 11.84481222830548, 12.03051911869218, 12.41646007092435

Graph of the $Z$-function along the critical line