Properties

Label 2-338130-1.1-c1-0-61
Degree $2$
Conductor $338130$
Sign $-1$
Analytic cond. $2699.98$
Root an. cond. $51.9613$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 8-s − 10-s − 13-s + 16-s − 20-s − 4·23-s + 25-s − 26-s − 10·29-s + 32-s + 6·37-s − 40-s + 2·41-s − 4·43-s − 4·46-s − 7·49-s + 50-s − 52-s + 6·53-s − 10·58-s − 6·61-s + 64-s + 65-s + 4·67-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.353·8-s − 0.316·10-s − 0.277·13-s + 1/4·16-s − 0.223·20-s − 0.834·23-s + 1/5·25-s − 0.196·26-s − 1.85·29-s + 0.176·32-s + 0.986·37-s − 0.158·40-s + 0.312·41-s − 0.609·43-s − 0.589·46-s − 49-s + 0.141·50-s − 0.138·52-s + 0.824·53-s − 1.31·58-s − 0.768·61-s + 1/8·64-s + 0.124·65-s + 0.488·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 338130 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338130 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(338130\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(2699.98\)
Root analytic conductor: \(51.9613\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 338130,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
13 \( 1 + T \)
17 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + p T^{2} \) 1.11.a
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.79055918701686, −12.44403625952654, −11.87782265832764, −11.53432022751143, −11.05077084385802, −10.79497119119158, −10.00869416435134, −9.726575651272046, −9.229142911574568, −8.607689869152910, −8.075852250497370, −7.661868503103249, −7.322764640248345, −6.674809454550146, −6.278429639799706, −5.718700300872541, −5.267824078215947, −4.779463495492995, −4.167477153905908, −3.807107754799569, −3.328320593775829, −2.677325676353384, −2.104214540030010, −1.613903396058674, −0.7440092542061218, 0, 0.7440092542061218, 1.613903396058674, 2.104214540030010, 2.677325676353384, 3.328320593775829, 3.807107754799569, 4.167477153905908, 4.779463495492995, 5.267824078215947, 5.718700300872541, 6.278429639799706, 6.674809454550146, 7.322764640248345, 7.661868503103249, 8.075852250497370, 8.607689869152910, 9.229142911574568, 9.726575651272046, 10.00869416435134, 10.79497119119158, 11.05077084385802, 11.53432022751143, 11.87782265832764, 12.44403625952654, 12.79055918701686

Graph of the $Z$-function along the critical line