Properties

Label 2-33600-1.1-c1-0-190
Degree $2$
Conductor $33600$
Sign $-1$
Analytic cond. $268.297$
Root an. cond. $16.3797$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 7-s + 9-s + 4·11-s − 2·13-s − 2·17-s − 4·19-s + 21-s + 8·23-s + 27-s + 2·29-s + 4·33-s + 6·37-s − 2·39-s − 6·41-s − 4·43-s + 49-s − 2·51-s − 10·53-s − 4·57-s − 12·59-s − 14·61-s + 63-s − 12·67-s + 8·69-s − 8·71-s − 10·73-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.377·7-s + 1/3·9-s + 1.20·11-s − 0.554·13-s − 0.485·17-s − 0.917·19-s + 0.218·21-s + 1.66·23-s + 0.192·27-s + 0.371·29-s + 0.696·33-s + 0.986·37-s − 0.320·39-s − 0.937·41-s − 0.609·43-s + 1/7·49-s − 0.280·51-s − 1.37·53-s − 0.529·57-s − 1.56·59-s − 1.79·61-s + 0.125·63-s − 1.46·67-s + 0.963·69-s − 0.949·71-s − 1.17·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33600\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(268.297\)
Root analytic conductor: \(16.3797\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 33600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 - T \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.12573988369960, −14.73331558074438, −14.37222143593417, −13.65323976202345, −13.26239919281839, −12.67463436651081, −12.05875769121904, −11.66357432491662, −10.87769798750730, −10.62615860813420, −9.780123387905974, −9.178901980845782, −8.940690154649106, −8.315637066186162, −7.628001630033919, −7.148091403509354, −6.430792401510254, −6.133379824276299, −4.949674385328794, −4.653040935112325, −4.043026393831295, −3.173851334731726, −2.718590813178230, −1.728687980681014, −1.278343622431682, 0, 1.278343622431682, 1.728687980681014, 2.718590813178230, 3.173851334731726, 4.043026393831295, 4.653040935112325, 4.949674385328794, 6.133379824276299, 6.430792401510254, 7.148091403509354, 7.628001630033919, 8.315637066186162, 8.940690154649106, 9.178901980845782, 9.780123387905974, 10.62615860813420, 10.87769798750730, 11.66357432491662, 12.05875769121904, 12.67463436651081, 13.26239919281839, 13.65323976202345, 14.37222143593417, 14.73331558074438, 15.12573988369960

Graph of the $Z$-function along the critical line