Properties

Label 2-327600-1.1-c1-0-214
Degree $2$
Conductor $327600$
Sign $-1$
Analytic cond. $2615.89$
Root an. cond. $51.1458$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s − 6·11-s − 13-s + 4·19-s + 4·31-s + 4·37-s − 6·41-s − 10·43-s + 6·47-s + 49-s + 6·53-s − 10·61-s − 4·67-s + 6·71-s − 2·73-s − 6·77-s + 4·79-s + 6·83-s − 6·89-s − 91-s + 10·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 0.377·7-s − 1.80·11-s − 0.277·13-s + 0.917·19-s + 0.718·31-s + 0.657·37-s − 0.937·41-s − 1.52·43-s + 0.875·47-s + 1/7·49-s + 0.824·53-s − 1.28·61-s − 0.488·67-s + 0.712·71-s − 0.234·73-s − 0.683·77-s + 0.450·79-s + 0.658·83-s − 0.635·89-s − 0.104·91-s + 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 327600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 327600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(327600\)    =    \(2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(2615.89\)
Root analytic conductor: \(51.1458\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 327600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
13 \( 1 + T \)
good11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.95483932007743, −12.26284346074162, −11.98012170633207, −11.49221782506544, −11.00437429394434, −10.46045690631870, −10.17105636094454, −9.808105407051791, −9.117762003744353, −8.710427289308004, −8.053304672336334, −7.836843203188484, −7.420098915730158, −6.852987574319820, −6.282902936324757, −5.702185602491816, −5.146911545323934, −4.996139683075126, −4.388106448889560, −3.682632849366434, −3.073005759725179, −2.668718076193147, −2.127896424881506, −1.443937694675330, −0.7023612338512182, 0, 0.7023612338512182, 1.443937694675330, 2.127896424881506, 2.668718076193147, 3.073005759725179, 3.682632849366434, 4.388106448889560, 4.996139683075126, 5.146911545323934, 5.702185602491816, 6.282902936324757, 6.852987574319820, 7.420098915730158, 7.836843203188484, 8.053304672336334, 8.710427289308004, 9.117762003744353, 9.808105407051791, 10.17105636094454, 10.46045690631870, 11.00437429394434, 11.49221782506544, 11.98012170633207, 12.26284346074162, 12.95483932007743

Graph of the $Z$-function along the critical line