Properties

Label 2-572e2-1.1-c1-0-128
Degree $2$
Conductor $327184$
Sign $-1$
Analytic cond. $2612.57$
Root an. cond. $51.1133$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 3·5-s + 2·7-s + 9-s + 6·15-s + 3·17-s + 2·19-s + 4·21-s + 4·25-s − 4·27-s + 3·29-s − 8·31-s + 6·35-s + 11·37-s − 9·41-s − 4·43-s + 3·45-s + 6·47-s − 3·49-s + 6·51-s + 3·53-s + 4·57-s − 6·59-s + 7·61-s + 2·63-s − 14·67-s − 12·71-s + ⋯
L(s)  = 1  + 1.15·3-s + 1.34·5-s + 0.755·7-s + 1/3·9-s + 1.54·15-s + 0.727·17-s + 0.458·19-s + 0.872·21-s + 4/5·25-s − 0.769·27-s + 0.557·29-s − 1.43·31-s + 1.01·35-s + 1.80·37-s − 1.40·41-s − 0.609·43-s + 0.447·45-s + 0.875·47-s − 3/7·49-s + 0.840·51-s + 0.412·53-s + 0.529·57-s − 0.781·59-s + 0.896·61-s + 0.251·63-s − 1.71·67-s − 1.42·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 327184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 327184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(327184\)    =    \(2^{4} \cdot 11^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(2612.57\)
Root analytic conductor: \(51.1133\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 327184,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
11 \( 1 \)
13 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 11 T + p T^{2} \) 1.37.al
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.04526160805695, −12.50884903490905, −11.86674099600288, −11.53306907186779, −10.95762742446780, −10.38274614865761, −10.02554077185978, −9.574728335764972, −9.155735749273571, −8.804601999981554, −8.261745549939626, −7.843187536956849, −7.413670220310034, −6.907047986169666, −6.167657450006980, −5.790079364913608, −5.368676152943877, −4.820896703266249, −4.271893467159255, −3.520655580188946, −3.173616313983413, −2.468924650351008, −2.196057049864122, −1.434642275288225, −1.234165872950038, 0, 1.234165872950038, 1.434642275288225, 2.196057049864122, 2.468924650351008, 3.173616313983413, 3.520655580188946, 4.271893467159255, 4.820896703266249, 5.368676152943877, 5.790079364913608, 6.167657450006980, 6.907047986169666, 7.413670220310034, 7.843187536956849, 8.261745549939626, 8.804601999981554, 9.155735749273571, 9.574728335764972, 10.02554077185978, 10.38274614865761, 10.95762742446780, 11.53306907186779, 11.86674099600288, 12.50884903490905, 13.04526160805695

Graph of the $Z$-function along the critical line