| L(s)  = 1  |     + 2·3-s     + 3·5-s     + 2·7-s     + 9-s             + 6·15-s     + 3·17-s     + 2·19-s     + 4·21-s         + 4·25-s     − 4·27-s     + 3·29-s     − 8·31-s         + 6·35-s     + 11·37-s         − 9·41-s     − 4·43-s     + 3·45-s     + 6·47-s     − 3·49-s     + 6·51-s     + 3·53-s         + 4·57-s     − 6·59-s     + 7·61-s     + 2·63-s         − 14·67-s         − 12·71-s  + ⋯ | 
 
| L(s)  = 1  |     + 1.15·3-s     + 1.34·5-s     + 0.755·7-s     + 1/3·9-s             + 1.54·15-s     + 0.727·17-s     + 0.458·19-s     + 0.872·21-s         + 4/5·25-s     − 0.769·27-s     + 0.557·29-s     − 1.43·31-s         + 1.01·35-s     + 1.80·37-s         − 1.40·41-s     − 0.609·43-s     + 0.447·45-s     + 0.875·47-s     − 3/7·49-s     + 0.840·51-s     + 0.412·53-s         + 0.529·57-s     − 0.781·59-s     + 0.896·61-s     + 0.251·63-s         − 1.71·67-s         − 1.42·71-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 327184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 327184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(=\) | 
             \(0\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(=\) | 
      
       \(0\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 |  \( 1 \)  |    | 
 | 11 |  \( 1 \)  |    | 
 | 13 |  \( 1 \)  |    | 
| good | 3 |  \( 1 - 2 T + p T^{2} \)  |  1.3.ac  | 
 | 5 |  \( 1 - 3 T + p T^{2} \)  |  1.5.ad  | 
 | 7 |  \( 1 - 2 T + p T^{2} \)  |  1.7.ac  | 
 | 17 |  \( 1 - 3 T + p T^{2} \)  |  1.17.ad  | 
 | 19 |  \( 1 - 2 T + p T^{2} \)  |  1.19.ac  | 
 | 23 |  \( 1 + p T^{2} \)  |  1.23.a  | 
 | 29 |  \( 1 - 3 T + p T^{2} \)  |  1.29.ad  | 
 | 31 |  \( 1 + 8 T + p T^{2} \)  |  1.31.i  | 
 | 37 |  \( 1 - 11 T + p T^{2} \)  |  1.37.al  | 
 | 41 |  \( 1 + 9 T + p T^{2} \)  |  1.41.j  | 
 | 43 |  \( 1 + 4 T + p T^{2} \)  |  1.43.e  | 
 | 47 |  \( 1 - 6 T + p T^{2} \)  |  1.47.ag  | 
 | 53 |  \( 1 - 3 T + p T^{2} \)  |  1.53.ad  | 
 | 59 |  \( 1 + 6 T + p T^{2} \)  |  1.59.g  | 
 | 61 |  \( 1 - 7 T + p T^{2} \)  |  1.61.ah  | 
 | 67 |  \( 1 + 14 T + p T^{2} \)  |  1.67.o  | 
 | 71 |  \( 1 + 12 T + p T^{2} \)  |  1.71.m  | 
 | 73 |  \( 1 - 7 T + p T^{2} \)  |  1.73.ah  | 
 | 79 |  \( 1 + 10 T + p T^{2} \)  |  1.79.k  | 
 | 83 |  \( 1 - 6 T + p T^{2} \)  |  1.83.ag  | 
 | 89 |  \( 1 - 6 T + p T^{2} \)  |  1.89.ag  | 
 | 97 |  \( 1 + 10 T + p T^{2} \)  |  1.97.k  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−13.04526160805695, −12.50884903490905, −11.86674099600288, −11.53306907186779, −10.95762742446780, −10.38274614865761, −10.02554077185978, −9.574728335764972, −9.155735749273571, −8.804601999981554, −8.261745549939626, −7.843187536956849, −7.413670220310034, −6.907047986169666, −6.167657450006980, −5.790079364913608, −5.368676152943877, −4.820896703266249, −4.271893467159255, −3.520655580188946, −3.173616313983413, −2.468924650351008, −2.196057049864122, −1.434642275288225, −1.234165872950038, 0, 
1.234165872950038, 1.434642275288225, 2.196057049864122, 2.468924650351008, 3.173616313983413, 3.520655580188946, 4.271893467159255, 4.820896703266249, 5.368676152943877, 5.790079364913608, 6.167657450006980, 6.907047986169666, 7.413670220310034, 7.843187536956849, 8.261745549939626, 8.804601999981554, 9.155735749273571, 9.574728335764972, 10.02554077185978, 10.38274614865761, 10.95762742446780, 11.53306907186779, 11.86674099600288, 12.50884903490905, 13.04526160805695