Properties

Label 2-308550-1.1-c1-0-16
Degree $2$
Conductor $308550$
Sign $1$
Analytic cond. $2463.78$
Root an. cond. $49.6365$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s − 2·7-s + 8-s + 9-s − 12-s + 4·13-s − 2·14-s + 16-s + 17-s + 18-s − 2·19-s + 2·21-s − 2·23-s − 24-s + 4·26-s − 27-s − 2·28-s − 2·29-s − 4·31-s + 32-s + 34-s + 36-s − 6·37-s − 2·38-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.755·7-s + 0.353·8-s + 1/3·9-s − 0.288·12-s + 1.10·13-s − 0.534·14-s + 1/4·16-s + 0.242·17-s + 0.235·18-s − 0.458·19-s + 0.436·21-s − 0.417·23-s − 0.204·24-s + 0.784·26-s − 0.192·27-s − 0.377·28-s − 0.371·29-s − 0.718·31-s + 0.176·32-s + 0.171·34-s + 1/6·36-s − 0.986·37-s − 0.324·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 308550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 308550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(308550\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 11^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(2463.78\)
Root analytic conductor: \(49.6365\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 308550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.402101225\)
\(L(\frac12)\) \(\approx\) \(1.402101225\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 \)
11 \( 1 \)
17 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.86837879835314, −12.18377571044926, −11.80936460687647, −11.42102856396028, −10.85371586893391, −10.35680228393163, −10.26641487657717, −9.446131070824093, −9.017823286922882, −8.553259455909675, −7.923233482820105, −7.406073228411602, −6.897844268596253, −6.459198184962204, −6.010479894671180, −5.687226448978951, −5.127247230742597, −4.564580321404101, −3.963710251582046, −3.570621590590256, −3.148440075594083, −2.408780856780819, −1.702411372568657, −1.257756761734172, −0.2841288951151797, 0.2841288951151797, 1.257756761734172, 1.702411372568657, 2.408780856780819, 3.148440075594083, 3.570621590590256, 3.963710251582046, 4.564580321404101, 5.127247230742597, 5.687226448978951, 6.010479894671180, 6.459198184962204, 6.897844268596253, 7.406073228411602, 7.923233482820105, 8.553259455909675, 9.017823286922882, 9.446131070824093, 10.26641487657717, 10.35680228393163, 10.85371586893391, 11.42102856396028, 11.80936460687647, 12.18377571044926, 12.86837879835314

Graph of the $Z$-function along the critical line