Properties

Label 2-301350-1.1-c1-0-141
Degree $2$
Conductor $301350$
Sign $-1$
Analytic cond. $2406.29$
Root an. cond. $49.0539$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s + 8-s + 9-s + 4·11-s + 12-s + 4·13-s + 16-s − 2·17-s + 18-s + 4·22-s − 4·23-s + 24-s + 4·26-s + 27-s − 4·31-s + 32-s + 4·33-s − 2·34-s + 36-s − 2·37-s + 4·39-s + 41-s + 12·43-s + 4·44-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.353·8-s + 1/3·9-s + 1.20·11-s + 0.288·12-s + 1.10·13-s + 1/4·16-s − 0.485·17-s + 0.235·18-s + 0.852·22-s − 0.834·23-s + 0.204·24-s + 0.784·26-s + 0.192·27-s − 0.718·31-s + 0.176·32-s + 0.696·33-s − 0.342·34-s + 1/6·36-s − 0.328·37-s + 0.640·39-s + 0.156·41-s + 1.82·43-s + 0.603·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 301350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 301350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(301350\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 41\)
Sign: $-1$
Analytic conductor: \(2406.29\)
Root analytic conductor: \(49.0539\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 301350,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
41 \( 1 - T \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 2 T + p T^{2} \) 1.37.c
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.86881270045218, −12.57318054715211, −12.08035458332599, −11.53117222281115, −11.21008949412587, −10.71421151054645, −10.25622797154710, −9.578030085156803, −9.247518155145546, −8.716197886244775, −8.356317592845599, −7.816889417611079, −7.110405940488467, −6.917933454012092, −6.287511933405900, −5.758586336688692, −5.551325888454041, −4.538534247290507, −4.147080082905294, −3.940558608493859, −3.291288059016383, −2.761302570547050, −2.123064432457077, −1.489208389663820, −1.119097697615468, 0, 1.119097697615468, 1.489208389663820, 2.123064432457077, 2.761302570547050, 3.291288059016383, 3.940558608493859, 4.147080082905294, 4.538534247290507, 5.551325888454041, 5.758586336688692, 6.287511933405900, 6.917933454012092, 7.110405940488467, 7.816889417611079, 8.356317592845599, 8.716197886244775, 9.247518155145546, 9.578030085156803, 10.25622797154710, 10.71421151054645, 11.21008949412587, 11.53117222281115, 12.08035458332599, 12.57318054715211, 12.86881270045218

Graph of the $Z$-function along the critical line