Properties

Label 2-293046-1.1-c1-0-11
Degree $2$
Conductor $293046$
Sign $-1$
Analytic cond. $2339.98$
Root an. cond. $48.3733$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s − 3·7-s − 8-s + 9-s + 10-s − 2·11-s + 12-s + 3·14-s − 15-s + 16-s − 18-s − 7·19-s − 20-s − 3·21-s + 2·22-s − 9·23-s − 24-s − 4·25-s + 27-s − 3·28-s − 4·29-s + 30-s − 8·31-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 1.13·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s − 0.603·11-s + 0.288·12-s + 0.801·14-s − 0.258·15-s + 1/4·16-s − 0.235·18-s − 1.60·19-s − 0.223·20-s − 0.654·21-s + 0.426·22-s − 1.87·23-s − 0.204·24-s − 4/5·25-s + 0.192·27-s − 0.566·28-s − 0.742·29-s + 0.182·30-s − 1.43·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 293046 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 293046 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(293046\)    =    \(2 \cdot 3 \cdot 13^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(2339.98\)
Root analytic conductor: \(48.3733\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 293046,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
13 \( 1 \)
17 \( 1 \)
good5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 + 2 T + p T^{2} \) 1.11.c
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 11 T + p T^{2} \) 1.61.al
67 \( 1 - 9 T + p T^{2} \) 1.67.aj
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 4 T + p T^{2} \) 1.97.e
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.82416561606666, −12.64094202696371, −11.99722678184430, −11.55571273052985, −10.96078646982402, −10.55015526206224, −10.06316807100026, −9.693448550957880, −9.369321373306639, −8.634631022817623, −8.386111197563839, −7.929545992421500, −7.423223070364608, −7.017878544862528, −6.312945395139479, −6.164284046584284, −5.439359427117937, −4.835800359053337, −3.918178235289879, −3.759078960120302, −3.339482889686285, −2.358622228080121, −2.196812900548934, −1.602469653534827, −0.4143138331321834, 0, 0.4143138331321834, 1.602469653534827, 2.196812900548934, 2.358622228080121, 3.339482889686285, 3.759078960120302, 3.918178235289879, 4.835800359053337, 5.439359427117937, 6.164284046584284, 6.312945395139479, 7.017878544862528, 7.423223070364608, 7.929545992421500, 8.386111197563839, 8.634631022817623, 9.369321373306639, 9.693448550957880, 10.06316807100026, 10.55015526206224, 10.96078646982402, 11.55571273052985, 11.99722678184430, 12.64094202696371, 12.82416561606666

Graph of the $Z$-function along the critical line