Properties

Label 2-293046-1.1-c1-0-19
Degree $2$
Conductor $293046$
Sign $1$
Analytic cond. $2339.98$
Root an. cond. $48.3733$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 3·5-s − 6-s + 2·7-s + 8-s + 9-s − 3·10-s + 3·11-s − 12-s + 2·14-s + 3·15-s + 16-s + 18-s + 4·19-s − 3·20-s − 2·21-s + 3·22-s + 9·23-s − 24-s + 4·25-s − 27-s + 2·28-s + 9·29-s + 3·30-s + 2·31-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 1.34·5-s − 0.408·6-s + 0.755·7-s + 0.353·8-s + 1/3·9-s − 0.948·10-s + 0.904·11-s − 0.288·12-s + 0.534·14-s + 0.774·15-s + 1/4·16-s + 0.235·18-s + 0.917·19-s − 0.670·20-s − 0.436·21-s + 0.639·22-s + 1.87·23-s − 0.204·24-s + 4/5·25-s − 0.192·27-s + 0.377·28-s + 1.67·29-s + 0.547·30-s + 0.359·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 293046 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 293046 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(293046\)    =    \(2 \cdot 3 \cdot 13^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(2339.98\)
Root analytic conductor: \(48.3733\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 293046,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.749124408\)
\(L(\frac12)\) \(\approx\) \(3.749124408\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
13 \( 1 \)
17 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 11 T + p T^{2} \) 1.67.l
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.58916158407783, −12.13357985199773, −11.75109935763919, −11.37341542282384, −11.26449631526560, −10.63740718912926, −10.10228967151068, −9.534719979632309, −8.952168227477622, −8.298794707085252, −8.116143254759310, −7.460435549374511, −6.938731568187334, −6.733885398664763, −6.143912972099918, −5.401380369750984, −4.940858527276302, −4.626918585600804, −4.222471356768807, −3.472863062974378, −3.213971551643723, −2.560399080606409, −1.533015650792086, −1.169667145573769, −0.5316165079130357, 0.5316165079130357, 1.169667145573769, 1.533015650792086, 2.560399080606409, 3.213971551643723, 3.472863062974378, 4.222471356768807, 4.626918585600804, 4.940858527276302, 5.401380369750984, 6.143912972099918, 6.733885398664763, 6.938731568187334, 7.460435549374511, 8.116143254759310, 8.298794707085252, 8.952168227477622, 9.534719979632309, 10.10228967151068, 10.63740718912926, 11.26449631526560, 11.37341542282384, 11.75109935763919, 12.13357985199773, 12.58916158407783

Graph of the $Z$-function along the critical line