Properties

Label 2-28665-1.1-c1-0-45
Degree $2$
Conductor $28665$
Sign $1$
Analytic cond. $228.891$
Root an. cond. $15.1291$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s − 5-s + 3·8-s + 10-s − 2·11-s − 13-s − 16-s − 8·17-s − 8·19-s + 20-s + 2·22-s + 25-s + 26-s + 4·29-s + 4·31-s − 5·32-s + 8·34-s + 4·37-s + 8·38-s − 3·40-s − 6·41-s − 10·43-s + 2·44-s + 6·47-s − 50-s + 52-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s − 0.447·5-s + 1.06·8-s + 0.316·10-s − 0.603·11-s − 0.277·13-s − 1/4·16-s − 1.94·17-s − 1.83·19-s + 0.223·20-s + 0.426·22-s + 1/5·25-s + 0.196·26-s + 0.742·29-s + 0.718·31-s − 0.883·32-s + 1.37·34-s + 0.657·37-s + 1.29·38-s − 0.474·40-s − 0.937·41-s − 1.52·43-s + 0.301·44-s + 0.875·47-s − 0.141·50-s + 0.138·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 28665 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28665 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(28665\)    =    \(3^{2} \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(228.891\)
Root analytic conductor: \(15.1291\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 28665,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
13 \( 1 + T \)
good2 \( 1 + T + p T^{2} \) 1.2.b
11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 + 8 T + p T^{2} \) 1.17.i
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.66078001317146, −15.26218055737868, −14.84890711850907, −14.04463172712036, −13.53599150306357, −13.02758448288467, −12.73402742902868, −11.88946286208969, −11.33057813834002, −10.69466261204451, −10.37166236053494, −9.829651417094885, −8.987431348740620, −8.658663010568642, −8.244042233052895, −7.686742472230416, −6.815821692505039, −6.585534736024653, −5.640594833304514, −4.690039286434039, −4.529192071405946, −3.912658681554736, −2.826647175916803, −2.210691297395300, −1.346917746025001, 0, 0, 1.346917746025001, 2.210691297395300, 2.826647175916803, 3.912658681554736, 4.529192071405946, 4.690039286434039, 5.640594833304514, 6.585534736024653, 6.815821692505039, 7.686742472230416, 8.244042233052895, 8.658663010568642, 8.987431348740620, 9.829651417094885, 10.37166236053494, 10.69466261204451, 11.33057813834002, 11.88946286208969, 12.73402742902868, 13.02758448288467, 13.53599150306357, 14.04463172712036, 14.84890711850907, 15.26218055737868, 15.66078001317146

Graph of the $Z$-function along the critical line