Properties

Label 2-282240-1.1-c1-0-108
Degree $2$
Conductor $282240$
Sign $1$
Analytic cond. $2253.69$
Root an. cond. $47.4731$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 2·13-s + 2·17-s + 8·23-s + 25-s + 2·29-s + 8·31-s − 4·37-s − 8·41-s − 4·43-s − 8·47-s + 12·53-s + 4·59-s + 6·61-s − 2·65-s + 4·67-s + 14·71-s + 2·73-s + 2·79-s + 6·83-s − 2·85-s + 12·89-s − 10·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.554·13-s + 0.485·17-s + 1.66·23-s + 1/5·25-s + 0.371·29-s + 1.43·31-s − 0.657·37-s − 1.24·41-s − 0.609·43-s − 1.16·47-s + 1.64·53-s + 0.520·59-s + 0.768·61-s − 0.248·65-s + 0.488·67-s + 1.66·71-s + 0.234·73-s + 0.225·79-s + 0.658·83-s − 0.216·85-s + 1.27·89-s − 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 282240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 282240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(282240\)    =    \(2^{7} \cdot 3^{2} \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(2253.69\)
Root analytic conductor: \(47.4731\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 282240,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.119316135\)
\(L(\frac12)\) \(\approx\) \(3.119316135\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
good11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 14 T + p T^{2} \) 1.71.ao
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.80379440684918, −12.20737869523297, −11.75641634024310, −11.47306756061115, −10.95641754694866, −10.38058078682817, −10.09454690541022, −9.556769406374124, −8.893494571390281, −8.567930068306519, −8.158917559976711, −7.678372933238392, −7.003444326437591, −6.652435902773290, −6.330676789271302, −5.446726525058625, −5.074706815860644, −4.749737208653662, −3.888566862450361, −3.567562176911759, −3.023816358614016, −2.460257227589361, −1.700080762172580, −0.9956296497751747, −0.5671382292797426, 0.5671382292797426, 0.9956296497751747, 1.700080762172580, 2.460257227589361, 3.023816358614016, 3.567562176911759, 3.888566862450361, 4.749737208653662, 5.074706815860644, 5.446726525058625, 6.330676789271302, 6.652435902773290, 7.003444326437591, 7.678372933238392, 8.158917559976711, 8.567930068306519, 8.893494571390281, 9.556769406374124, 10.09454690541022, 10.38058078682817, 10.95641754694866, 11.47306756061115, 11.75641634024310, 12.20737869523297, 12.80379440684918

Graph of the $Z$-function along the critical line