Properties

Label 2-270480-1.1-c1-0-30
Degree $2$
Conductor $270480$
Sign $1$
Analytic cond. $2159.79$
Root an. cond. $46.4735$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 9-s − 4·11-s − 6·13-s + 15-s − 2·17-s − 4·19-s − 23-s + 25-s − 27-s + 6·29-s + 4·33-s + 6·37-s + 6·39-s − 10·41-s + 4·43-s − 45-s + 8·47-s + 2·51-s + 6·53-s + 4·55-s + 4·57-s + 4·59-s + 2·61-s + 6·65-s − 4·67-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 1/3·9-s − 1.20·11-s − 1.66·13-s + 0.258·15-s − 0.485·17-s − 0.917·19-s − 0.208·23-s + 1/5·25-s − 0.192·27-s + 1.11·29-s + 0.696·33-s + 0.986·37-s + 0.960·39-s − 1.56·41-s + 0.609·43-s − 0.149·45-s + 1.16·47-s + 0.280·51-s + 0.824·53-s + 0.539·55-s + 0.529·57-s + 0.520·59-s + 0.256·61-s + 0.744·65-s − 0.488·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 270480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 270480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(270480\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(2159.79\)
Root analytic conductor: \(46.4735\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 270480,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.008083193\)
\(L(\frac12)\) \(\approx\) \(1.008083193\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 \)
23 \( 1 + T \)
good11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.54581601168682, −12.44064094230123, −11.85643098728433, −11.49647315090109, −10.83554698704193, −10.56165041467308, −10.00636780525771, −9.818739444519027, −9.026394354904563, −8.524309140513766, −8.090537807063128, −7.556505497346277, −7.165578670172772, −6.721790126284977, −6.144000569830323, −5.564244296597077, −5.085009549616079, −4.579060465624567, −4.355663010557618, −3.545672083469949, −2.861506405482857, −2.304723780683876, −2.016532226148021, −0.8025884640246662, −0.3688060917666437, 0.3688060917666437, 0.8025884640246662, 2.016532226148021, 2.304723780683876, 2.861506405482857, 3.545672083469949, 4.355663010557618, 4.579060465624567, 5.085009549616079, 5.564244296597077, 6.144000569830323, 6.721790126284977, 7.165578670172772, 7.556505497346277, 8.090537807063128, 8.524309140513766, 9.026394354904563, 9.818739444519027, 10.00636780525771, 10.56165041467308, 10.83554698704193, 11.49647315090109, 11.85643098728433, 12.44064094230123, 12.54581601168682

Graph of the $Z$-function along the critical line