Properties

Label 2-510e2-1.1-c1-0-19
Degree $2$
Conductor $260100$
Sign $1$
Analytic cond. $2076.90$
Root an. cond. $45.5731$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s − 5·13-s − 19-s + 6·23-s + 5·31-s + 37-s − 5·43-s − 12·47-s − 6·49-s + 12·53-s − 12·59-s − 61-s + 13·67-s − 6·71-s − 2·73-s + 8·79-s − 6·83-s + 6·89-s − 5·91-s − 17·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 0.377·7-s − 1.38·13-s − 0.229·19-s + 1.25·23-s + 0.898·31-s + 0.164·37-s − 0.762·43-s − 1.75·47-s − 6/7·49-s + 1.64·53-s − 1.56·59-s − 0.128·61-s + 1.58·67-s − 0.712·71-s − 0.234·73-s + 0.900·79-s − 0.658·83-s + 0.635·89-s − 0.524·91-s − 1.72·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 260100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 260100 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(260100\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(2076.90\)
Root analytic conductor: \(45.5731\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 260100,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.665171279\)
\(L(\frac12)\) \(\approx\) \(1.665171279\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
17 \( 1 \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 5 T + p T^{2} \) 1.13.f
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.81926582943300, −12.31080690858135, −11.90769213930062, −11.47574911581333, −10.99105604305951, −10.53652595409320, −9.968239593598368, −9.618881364940321, −9.201570978752187, −8.494012327620334, −8.207042612836243, −7.653470044753799, −7.156509746408248, −6.694258062065522, −6.309137849627072, −5.484380406335404, −5.107262062909761, −4.673486321788742, −4.257768457146044, −3.420972795805963, −2.954861240787036, −2.427463268368506, −1.792394753673858, −1.162609513960620, −0.3611595683722777, 0.3611595683722777, 1.162609513960620, 1.792394753673858, 2.427463268368506, 2.954861240787036, 3.420972795805963, 4.257768457146044, 4.673486321788742, 5.107262062909761, 5.484380406335404, 6.309137849627072, 6.694258062065522, 7.156509746408248, 7.653470044753799, 8.207042612836243, 8.494012327620334, 9.201570978752187, 9.618881364940321, 9.968239593598368, 10.53652595409320, 10.99105604305951, 11.47574911581333, 11.90769213930062, 12.31080690858135, 12.81926582943300

Graph of the $Z$-function along the critical line