Properties

Label 2-25872-1.1-c1-0-26
Degree $2$
Conductor $25872$
Sign $-1$
Analytic cond. $206.588$
Root an. cond. $14.3732$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s + 9-s − 11-s − 2·13-s + 2·15-s − 6·17-s − 8·19-s − 4·23-s − 25-s − 27-s + 2·29-s + 8·31-s + 33-s + 6·37-s + 2·39-s − 6·41-s − 8·43-s − 2·45-s + 4·47-s + 6·51-s + 10·53-s + 2·55-s + 8·57-s + 4·59-s + 14·61-s + 4·65-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s + 1/3·9-s − 0.301·11-s − 0.554·13-s + 0.516·15-s − 1.45·17-s − 1.83·19-s − 0.834·23-s − 1/5·25-s − 0.192·27-s + 0.371·29-s + 1.43·31-s + 0.174·33-s + 0.986·37-s + 0.320·39-s − 0.937·41-s − 1.21·43-s − 0.298·45-s + 0.583·47-s + 0.840·51-s + 1.37·53-s + 0.269·55-s + 1.05·57-s + 0.520·59-s + 1.79·61-s + 0.496·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(25872\)    =    \(2^{4} \cdot 3 \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(206.588\)
Root analytic conductor: \(14.3732\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 25872,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
11 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.50343390471146, −15.17005088693024, −14.81768563701599, −13.81842103911155, −13.46428983958075, −12.77131944497331, −12.36906788659783, −11.67468684402270, −11.44478014255603, −10.75972228653917, −10.21511624338760, −9.792760373496632, −8.858958194995384, −8.282889227124715, −8.024341957723153, −7.117471664123332, −6.568362415127132, −6.254755896238647, −5.260121746896808, −4.688392944164633, −4.147396112269810, −3.674607963825100, −2.399007564360478, −2.154395409184630, −0.7168042214555630, 0, 0.7168042214555630, 2.154395409184630, 2.399007564360478, 3.674607963825100, 4.147396112269810, 4.688392944164633, 5.260121746896808, 6.254755896238647, 6.568362415127132, 7.117471664123332, 8.024341957723153, 8.282889227124715, 8.858958194995384, 9.792760373496632, 10.21511624338760, 10.75972228653917, 11.44478014255603, 11.67468684402270, 12.36906788659783, 12.77131944497331, 13.46428983958075, 13.81842103911155, 14.81768563701599, 15.17005088693024, 15.50343390471146

Graph of the $Z$-function along the critical line