Properties

Label 2-2574-1.1-c1-0-45
Degree $2$
Conductor $2574$
Sign $-1$
Analytic cond. $20.5534$
Root an. cond. $4.53359$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 4·7-s + 8-s + 11-s + 13-s − 4·14-s + 16-s − 4·19-s + 22-s − 5·25-s + 26-s − 4·28-s − 10·31-s + 32-s + 2·37-s − 4·38-s + 6·41-s − 10·43-s + 44-s + 9·49-s − 5·50-s + 52-s − 6·53-s − 4·56-s + 2·61-s − 10·62-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 1.51·7-s + 0.353·8-s + 0.301·11-s + 0.277·13-s − 1.06·14-s + 1/4·16-s − 0.917·19-s + 0.213·22-s − 25-s + 0.196·26-s − 0.755·28-s − 1.79·31-s + 0.176·32-s + 0.328·37-s − 0.648·38-s + 0.937·41-s − 1.52·43-s + 0.150·44-s + 9/7·49-s − 0.707·50-s + 0.138·52-s − 0.824·53-s − 0.534·56-s + 0.256·61-s − 1.27·62-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2574 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2574 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2574\)    =    \(2 \cdot 3^{2} \cdot 11 \cdot 13\)
Sign: $-1$
Analytic conductor: \(20.5534\)
Root analytic conductor: \(4.53359\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2574,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
11 \( 1 - T \)
13 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 4 T + p T^{2} \) 1.7.e
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.557035733463942560599715120987, −7.52104320390851123045764221154, −6.78175364777231647019603915327, −6.14149234771220156853905294128, −5.55677167990463394119827611669, −4.33367672755955602988575320655, −3.67086638494344903515072731439, −2.90553344815263021979503844085, −1.77465525514607936382065887676, 0, 1.77465525514607936382065887676, 2.90553344815263021979503844085, 3.67086638494344903515072731439, 4.33367672755955602988575320655, 5.55677167990463394119827611669, 6.14149234771220156853905294128, 6.78175364777231647019603915327, 7.52104320390851123045764221154, 8.557035733463942560599715120987

Graph of the $Z$-function along the critical line