Properties

Label 2-2541-1.1-c1-0-67
Degree $2$
Conductor $2541$
Sign $-1$
Analytic cond. $20.2899$
Root an. cond. $4.50444$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·4-s − 3·5-s − 7-s + 9-s − 2·12-s + 4·13-s − 3·15-s + 4·16-s + 3·17-s − 2·19-s + 6·20-s − 21-s + 4·25-s + 27-s + 2·28-s + 6·29-s + 2·31-s + 3·35-s − 2·36-s − 10·37-s + 4·39-s − 6·41-s − 11·43-s − 3·45-s − 3·47-s + 4·48-s + ⋯
L(s)  = 1  + 0.577·3-s − 4-s − 1.34·5-s − 0.377·7-s + 1/3·9-s − 0.577·12-s + 1.10·13-s − 0.774·15-s + 16-s + 0.727·17-s − 0.458·19-s + 1.34·20-s − 0.218·21-s + 4/5·25-s + 0.192·27-s + 0.377·28-s + 1.11·29-s + 0.359·31-s + 0.507·35-s − 1/3·36-s − 1.64·37-s + 0.640·39-s − 0.937·41-s − 1.67·43-s − 0.447·45-s − 0.437·47-s + 0.577·48-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2541 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2541 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2541\)    =    \(3 \cdot 7 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(20.2899\)
Root analytic conductor: \(4.50444\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2541,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
7 \( 1 + T \)
11 \( 1 \)
good2 \( 1 + p T^{2} \) 1.2.a
5 \( 1 + 3 T + p T^{2} \) 1.5.d
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 11 T + p T^{2} \) 1.43.l
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 15 T + p T^{2} \) 1.83.p
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.593565044716048297127328972129, −8.005581478759224187717954077599, −7.18370532094215395583297187649, −6.27519249095712814961967521422, −5.16378096587245035333983781754, −4.32740310692458104162463103471, −3.61284231591070088832057974545, −3.13539084113908463199933527201, −1.32939120782437545390216757653, 0, 1.32939120782437545390216757653, 3.13539084113908463199933527201, 3.61284231591070088832057974545, 4.32740310692458104162463103471, 5.16378096587245035333983781754, 6.27519249095712814961967521422, 7.18370532094215395583297187649, 8.005581478759224187717954077599, 8.593565044716048297127328972129

Graph of the $Z$-function along the critical line