Properties

Label 2-244800-1.1-c1-0-334
Degree $2$
Conductor $244800$
Sign $-1$
Analytic cond. $1954.73$
Root an. cond. $44.2124$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·7-s − 11-s − 6·13-s + 17-s + 19-s + 6·23-s − 5·29-s − 2·31-s − 11·37-s + 9·41-s + 5·47-s + 2·49-s + 3·53-s − 12·59-s + 10·61-s + 4·67-s + 4·71-s − 3·73-s − 3·77-s − 2·79-s − 12·83-s − 4·89-s − 18·91-s − 14·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 1.13·7-s − 0.301·11-s − 1.66·13-s + 0.242·17-s + 0.229·19-s + 1.25·23-s − 0.928·29-s − 0.359·31-s − 1.80·37-s + 1.40·41-s + 0.729·47-s + 2/7·49-s + 0.412·53-s − 1.56·59-s + 1.28·61-s + 0.488·67-s + 0.474·71-s − 0.351·73-s − 0.341·77-s − 0.225·79-s − 1.31·83-s − 0.423·89-s − 1.88·91-s − 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 244800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 244800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(244800\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(1954.73\)
Root analytic conductor: \(44.2124\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 244800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
17 \( 1 - T \)
good7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 + 6 T + p T^{2} \) 1.13.g
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 5 T + p T^{2} \) 1.47.af
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + 3 T + p T^{2} \) 1.73.d
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.95282919648153, −12.56976481169584, −12.27971494343480, −11.64067048877469, −11.29382313225408, −10.78715110154130, −10.44414326363715, −9.811569376959176, −9.356389474217387, −8.980429165949002, −8.346322993629397, −7.898251357559558, −7.393449492640880, −7.126376838427186, −6.632033561484683, −5.638544119933795, −5.330697473779553, −5.103201126256543, −4.346686091937535, −4.042612424427054, −3.083804980683415, −2.757166626197698, −2.014970173137789, −1.597417925589073, −0.7869583070175616, 0, 0.7869583070175616, 1.597417925589073, 2.014970173137789, 2.757166626197698, 3.083804980683415, 4.042612424427054, 4.346686091937535, 5.103201126256543, 5.330697473779553, 5.638544119933795, 6.632033561484683, 7.126376838427186, 7.393449492640880, 7.898251357559558, 8.346322993629397, 8.980429165949002, 9.356389474217387, 9.811569376959176, 10.44414326363715, 10.78715110154130, 11.29382313225408, 11.64067048877469, 12.27971494343480, 12.56976481169584, 12.95282919648153

Graph of the $Z$-function along the critical line