Properties

Label 2-244608-1.1-c1-0-135
Degree $2$
Conductor $244608$
Sign $1$
Analytic cond. $1953.20$
Root an. cond. $44.1950$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s + 9-s − 4·11-s + 13-s + 2·15-s + 4·17-s − 6·19-s + 6·23-s − 25-s − 27-s − 10·29-s − 4·31-s + 4·33-s − 4·37-s − 39-s − 2·41-s + 4·43-s − 2·45-s + 8·47-s − 4·51-s + 6·53-s + 8·55-s + 6·57-s − 6·59-s − 6·61-s − 2·65-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s + 1/3·9-s − 1.20·11-s + 0.277·13-s + 0.516·15-s + 0.970·17-s − 1.37·19-s + 1.25·23-s − 1/5·25-s − 0.192·27-s − 1.85·29-s − 0.718·31-s + 0.696·33-s − 0.657·37-s − 0.160·39-s − 0.312·41-s + 0.609·43-s − 0.298·45-s + 1.16·47-s − 0.560·51-s + 0.824·53-s + 1.07·55-s + 0.794·57-s − 0.781·59-s − 0.768·61-s − 0.248·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 244608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 244608 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(244608\)    =    \(2^{7} \cdot 3 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(1953.20\)
Root analytic conductor: \(44.1950\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 244608,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.03510795461333, −12.83742306732847, −12.52818870337851, −11.91143076010003, −11.38569837269935, −11.07096235546248, −10.65207682769837, −10.25010296023830, −9.748032660199532, −8.940803723746445, −8.762059451607576, −8.081266742611624, −7.584996673555554, −7.255436472328697, −6.915316534406234, −5.934793122753895, −5.725275783641887, −5.291688341735103, −4.572407313643578, −4.179436285555965, −3.595123033739523, −3.105609970799023, −2.407338023194954, −1.739996487773446, −1.036506658713868, 0, 0, 1.036506658713868, 1.739996487773446, 2.407338023194954, 3.105609970799023, 3.595123033739523, 4.179436285555965, 4.572407313643578, 5.291688341735103, 5.725275783641887, 5.934793122753895, 6.915316534406234, 7.255436472328697, 7.584996673555554, 8.081266742611624, 8.762059451607576, 8.940803723746445, 9.748032660199532, 10.25010296023830, 10.65207682769837, 11.07096235546248, 11.38569837269935, 11.91143076010003, 12.52818870337851, 12.83742306732847, 13.03510795461333

Graph of the $Z$-function along the critical line