Properties

Label 2-244608-1.1-c1-0-26
Degree $2$
Conductor $244608$
Sign $-1$
Analytic cond. $1953.20$
Root an. cond. $44.1950$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 3·5-s + 9-s − 5·11-s − 13-s − 3·15-s − 3·17-s − 7·19-s − 5·23-s + 4·25-s + 27-s − 3·29-s − 4·31-s − 5·33-s − 9·37-s − 39-s + 6·41-s − 43-s − 3·45-s − 3·51-s − 10·53-s + 15·55-s − 7·57-s + 10·59-s + 5·61-s + 3·65-s − 2·67-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.34·5-s + 1/3·9-s − 1.50·11-s − 0.277·13-s − 0.774·15-s − 0.727·17-s − 1.60·19-s − 1.04·23-s + 4/5·25-s + 0.192·27-s − 0.557·29-s − 0.718·31-s − 0.870·33-s − 1.47·37-s − 0.160·39-s + 0.937·41-s − 0.152·43-s − 0.447·45-s − 0.420·51-s − 1.37·53-s + 2.02·55-s − 0.927·57-s + 1.30·59-s + 0.640·61-s + 0.372·65-s − 0.244·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 244608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 244608 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(244608\)    =    \(2^{7} \cdot 3 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1953.20\)
Root analytic conductor: \(44.1950\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 244608,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 + 5 T + p T^{2} \) 1.11.f
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + 5 T + p T^{2} \) 1.23.f
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 9 T + p T^{2} \) 1.37.j
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.93566863478934, −12.74301148962513, −12.33051464591492, −11.65438114952033, −11.23861248892434, −10.79742528425814, −10.39375285918001, −9.936790381269238, −9.299718973761690, −8.706678378323699, −8.296710768313319, −8.076001527342817, −7.520129303000401, −7.092858867913974, −6.660616112843421, −5.883003073735709, −5.387943270324186, −4.754237310934170, −4.215596244575982, −3.948969389844057, −3.301544117628302, −2.712946801283000, −2.146021111047338, −1.719997586358880, −0.4353673280406069, 0, 0.4353673280406069, 1.719997586358880, 2.146021111047338, 2.712946801283000, 3.301544117628302, 3.948969389844057, 4.215596244575982, 4.754237310934170, 5.387943270324186, 5.883003073735709, 6.660616112843421, 7.092858867913974, 7.520129303000401, 8.076001527342817, 8.296710768313319, 8.706678378323699, 9.299718973761690, 9.936790381269238, 10.39375285918001, 10.79742528425814, 11.23861248892434, 11.65438114952033, 12.33051464591492, 12.74301148962513, 12.93566863478934

Graph of the $Z$-function along the critical line