Properties

Label 2-244494-1.1-c1-0-1
Degree $2$
Conductor $244494$
Sign $1$
Analytic cond. $1952.29$
Root an. cond. $44.1847$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 4·7-s − 8-s − 4·11-s + 2·13-s − 4·14-s + 16-s + 2·19-s + 4·22-s − 4·23-s − 5·25-s − 2·26-s + 4·28-s − 2·31-s − 32-s − 10·37-s − 2·38-s − 12·41-s + 10·43-s − 4·44-s + 4·46-s − 47-s + 9·49-s + 5·50-s + 2·52-s − 10·53-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 1.51·7-s − 0.353·8-s − 1.20·11-s + 0.554·13-s − 1.06·14-s + 1/4·16-s + 0.458·19-s + 0.852·22-s − 0.834·23-s − 25-s − 0.392·26-s + 0.755·28-s − 0.359·31-s − 0.176·32-s − 1.64·37-s − 0.324·38-s − 1.87·41-s + 1.52·43-s − 0.603·44-s + 0.589·46-s − 0.145·47-s + 9/7·49-s + 0.707·50-s + 0.277·52-s − 1.37·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 244494 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 244494 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(244494\)    =    \(2 \cdot 3^{2} \cdot 17^{2} \cdot 47\)
Sign: $1$
Analytic conductor: \(1952.29\)
Root analytic conductor: \(44.1847\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 244494,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6473879866\)
\(L(\frac12)\) \(\approx\) \(0.6473879866\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
17 \( 1 \)
47 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.78819758432932, −12.24515987812758, −11.85670385448605, −11.39378384544755, −10.91897433540166, −10.66157865822176, −10.07986153321155, −9.712055466031855, −9.082406851335472, −8.388409335000826, −8.283948245980558, −7.872242123016391, −7.309671687382505, −6.947871165869789, −6.167848947964678, −5.566511886517923, −5.315025666065385, −4.765073708800431, −4.052239001063258, −3.582157381468144, −2.798172464376001, −2.268958637282775, −1.564067739002409, −1.397155318268471, −0.2375444270841942, 0.2375444270841942, 1.397155318268471, 1.564067739002409, 2.268958637282775, 2.798172464376001, 3.582157381468144, 4.052239001063258, 4.765073708800431, 5.315025666065385, 5.566511886517923, 6.167848947964678, 6.947871165869789, 7.309671687382505, 7.872242123016391, 8.283948245980558, 8.388409335000826, 9.082406851335472, 9.712055466031855, 10.07986153321155, 10.66157865822176, 10.91897433540166, 11.39378384544755, 11.85670385448605, 12.24515987812758, 12.78819758432932

Graph of the $Z$-function along the critical line