Properties

Label 2-242760-1.1-c1-0-57
Degree $2$
Conductor $242760$
Sign $-1$
Analytic cond. $1938.44$
Root an. cond. $44.0278$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s − 7-s + 9-s − 2·13-s + 15-s − 4·19-s − 21-s − 4·23-s + 25-s + 27-s − 6·29-s − 35-s − 6·37-s − 2·39-s − 6·41-s − 4·43-s + 45-s + 8·47-s + 49-s + 14·53-s − 4·57-s − 4·59-s + 2·61-s − 63-s − 2·65-s + 12·67-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 0.377·7-s + 1/3·9-s − 0.554·13-s + 0.258·15-s − 0.917·19-s − 0.218·21-s − 0.834·23-s + 1/5·25-s + 0.192·27-s − 1.11·29-s − 0.169·35-s − 0.986·37-s − 0.320·39-s − 0.937·41-s − 0.609·43-s + 0.149·45-s + 1.16·47-s + 1/7·49-s + 1.92·53-s − 0.529·57-s − 0.520·59-s + 0.256·61-s − 0.125·63-s − 0.248·65-s + 1.46·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 242760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 242760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(242760\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(1938.44\)
Root analytic conductor: \(44.0278\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 242760,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 + T \)
17 \( 1 \)
good11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.16119444526848, −12.69880420978789, −12.23691431445597, −11.86982002077653, −11.22588833442960, −10.66584197710409, −10.17020381069483, −9.966050284690209, −9.342397167306338, −8.941569350257971, −8.458809203284874, −8.054477113464887, −7.387533951644802, −6.940437376545251, −6.615978641096519, −5.851579831348255, −5.521217537902379, −4.937438321164920, −4.228065945985232, −3.846374104836617, −3.282950002786463, −2.633291434853299, −2.028161778665325, −1.798064997125343, −0.7574104770931613, 0, 0.7574104770931613, 1.798064997125343, 2.028161778665325, 2.633291434853299, 3.282950002786463, 3.846374104836617, 4.228065945985232, 4.937438321164920, 5.521217537902379, 5.851579831348255, 6.615978641096519, 6.940437376545251, 7.387533951644802, 8.054477113464887, 8.458809203284874, 8.941569350257971, 9.342397167306338, 9.966050284690209, 10.17020381069483, 10.66584197710409, 11.22588833442960, 11.86982002077653, 12.23691431445597, 12.69880420978789, 13.16119444526848

Graph of the $Z$-function along the critical line